回归预测|基于SMA-CNN-GRU-Attention的数据回归预测Matlab程序 多特征输入单输出 含基础模型 黏菌优化-卷积神经网络-门控循环单元网络-自注意力机制

回归预测|基于SMA-CNN-GRU-Attention的数据回归预测Matlab程序 多特征输入单输出 含基础模型 黏菌优化-卷积神经网络-门控循环单元网络-自注意力机制


前言

回归预测|基于SMA-CNN-GRU-Attention的数据回归预测Matlab程序 多特征输入单输出 含基础模型 黏菌优化-卷积神经网络-门控循环单元网络-自注意力机制

一、SMA-CNN-GRU-Attention模型

SMA-CNN-GRU-Attention模型结合了黏菌优化、卷积神经网络(CNN)、门控循环单元网络(GRU)和自注意力机制,用于时间序列回归预测任务。让我们详细解释每个组成部分的原理和整体过程:

1. 黏菌优化

黏菌优化是一种基于生物学中黏菌的行为模式的优化算法,用于寻找多维空间中的最优解。其主要特点包括:

  • 黏菌模型:模仿黏菌在环境中移动和聚集的方式,通过模拟排斥和吸引的机制来更新优化过程中的候选解。
  • 应用领域:通常用于求解复杂的多维优化问题,例如参数调优和模型训练中的超参数优化。

2. 卷积神经网络 (CNN)

卷积神经网络(CNN)在图像处理和序列数据分析中表现出色,其关键特点包括:

  • 卷积层:通过卷积核在局部感受野内提取特征,保留空间结构信息。
  • 池化层:通过池化操作(如最大池化)减少特征映射的维度,提取最显著的特征。
  • 特征提取:通过多层卷积和池化层,逐步提取输入数据的抽象特征表示。

3. 门控循环单元网络 (GRU)

门控循环单元网络(GRU)是一种改进的循环神经网络(RNN),用于捕捉序列数据中的长期依赖关系,其主要组成部分包括:

  • 更新门:控制新信息更新的比例。
  • 重置门:控制如何整合新的输入和历史信息。
  • 隐藏状态:通过门控机制来更新和传递序列数据中的信息。

4. 自注意力机制

自注意力机制允许模型根据输入的不同部分调整其关注度,其关键步骤包括:

  • 注意力权重计算:计算每个输入位置的注意力权重,通常是通过学习得到的可学习参数实现。
  • 加权求和:使用计算得到的注意力权重对所有输入位置的表示进行加权求和,生成加权后的表示结果。

SMA-CNN-GRU-Attention模型整合及工作流程

现在将这些技术整合到SMA-CNN-GRU-Attention模型中,以实现时间序列回归预测任务的详细过程:

  1. 黏菌优化初始化

    • 初始阶段,使用黏菌优化算法初始化模型参数,包括CNN的卷积核大小和数量、GRU的隐藏单元数量等超参数。
  2. 特征提取阶段

    • 使用卷积神经网络(CNN)对输入的时间序列数据进行特征提取。这包括通过卷积层提取局部特征,并通过池化层减少特征维度。
  3. 序列建模阶段

    • 将CNN提取的特征作为门控循环单元网络(GRU)的输入序列。GRU将对序列中的每个时间步进行处理,并通过门控机制来更新和传递信息。
  4. 自注意力机制应用

    • 在GRU的输出上应用自注意力机制,计算每个时间步的注意力权重。这一步骤能够增强模型对序列中不同部分的关注能力,并提升预测的精度。
  5. 回归预测

    • 基于加权后的序列表示,使用适当的输出层(如全连接层)进行回归预测。模型通过优化算法(如梯度下降)迭代地调整参数,以最小化预测值与实际值之间的误差。
  6. 训练和优化

    • 在训练过程中,使用反向传播算法结合黏菌优化更新模型参数。这一过程涉及将损失函数的梯度反向传播到网络中,优化模型以提升预测性能。

综上所述,SMA-CNN-GRU-Attention模型利用黏菌优化算法初始化并结合卷积神经网络、门控循环单元网络和自注意力机制,实现了对时间序列数据的高效建模和精确的回归预测能力。这种整合模型能够有效地处理复杂的时间序列任务,如股票价格预测、气候模式分析等。

二、实验结果

SMA-CNN-GRU-Attention回归预测结果
在这里插入图片描述

CNN-GRU-Attention回归预测结果
在这里插入图片描述

CNN-GRU回归预测结果
在这里插入图片描述

GRU回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值