一种多策略改进小龙虾智能优化算法MSCOA 改进策略:种群混沌映射初始化+透镜成像反向学习+黄金正弦变异策略

一种多策略改进小龙虾智能优化算法MSCOA 改进策略:种群初始化精英反向+透镜成像反向学习+黄金正弦变异策略

一、小龙虾COA基本原理

小龙虾优化算法(Lobster Optimization Algorithm,LOA)是一种模拟小龙虾觅食行为的优化算法。其基本原理和步骤如下:

  1. 初始化

    • 随机生成小龙虾种群的位置(解)和速度。
  2. 适应度评估

    • 计算每只小龙虾的适应度值(目标函数值)。
  3. 更新位置

    • 小龙虾通过两种主要行为来更新位置:
      • 觅食行为:小龙虾在其当前位置附近搜索更好的解。
      • 社会行为:小龙虾根据邻近个体的位置调整自己的位置,以利用群体的知识。
  4. 选择最优解

    • 通过比较适应度值,选择当前最优的小龙虾解作为全局最优解。
  5. 迭代

    • 重复步骤2-4,直到达到最大迭代次数或满足停止准则。
  6. 输出结果

    • 输出最优解及其适应度值。

小龙虾优化算法的优点包括较强的全局搜索能力和较快的收敛速度,但其效率和效果依赖于具体问题和参数设置。

二、改进策略

2.1种群初始化 映射

六种映射可供选择
tent
chebyshev
Singer
Logistic
Sine
Circle

2.2 透镜成像反向学习

在这里插入图片描述

2.3 黄金正弦变异策略

在这里插入图片描述

三、实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、核心代码


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% rng(24,'twister');      % 随机种子

%%  参数设置
SearchAgents = 30;                                % COApulation members 
Max_iterations = 500;                             % maximum number of iteration
number = 'F10';                                    % 选定优化函数,自行替换:F1~F23   
[lb,ub,dim,fobj] = Get_Functions_details(number); % [lb,ub,dim,fobj]:下界、上界、维度、目标函数表达式
 
%% 循环实验
for i = 1:2
%% MSCOA
[MSCOA_Best_score,MSCOA_Best_pos,MSCOA_cg_curve]=MSCOA(SearchAgents,Max_iterations,lb,ub,dim,fobj); 
MSCOA_fitness(i) = MSCOA_Best_score;
%% COA
[COA_Best_score,COA_Best_pos,COA_cg_curve]=COA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
COA_fitness(i)= COA_Best_score;
end

%% 算法的最佳适应度值
% MSCOA
MSCOA_min_value = min(MSCOA_fitness);MSCOA_max_value = max(MSCOA_fitness);MSCOA_mean_value = mean(MSCOA_fitness);MSCOA_std_value = std(MSCOA_fitness);
MSCOA_result = [MSCOA_mean_value,MSCOA_min_value,MSCOA_std_value];
disp('---------------------------MSCOA--------------------------------')
disp(['MSCOA平均值:', num2str(MSCOA_mean_value)])
disp(['MSCOA最优值:', num2str(MSCOA_min_value)])
disp(['MSCOA标准差:', num2str(MSCOA_std_value)])

% COA
COA_min_value = min(COA_fitness);COA_max_value = max(COA_fitness);COA_mean_value = mean(COA_fitness);COA_std_value = std(COA_fitness);
COA_result =  [COA_mean_value,COA_min_value,COA_std_value];
disp('---------------------------COA--------------------------------')
disp(['COA平均值:', num2str(COA_mean_value)])
disp(['COA最优值:', num2str(COA_min_value)])
disp(['COA标准差:', num2str(COA_std_value)])

%% 把结果保存
columnNames = {'平均值', '最优值', '标准差'};
RowNames = {'MSCOA', 'COA'};
result = [MSCOA_result',COA_result'];

%% 保存适应度函数
curve = [MSCOA_cg_curve' COA_cg_curve'];

%% 绘图
figure1 = figure('Color',[1 1 1]);
G1=subplot(1,2,1,'Parent',figure1);
func_plot(number)
title(number)
xlabel('x')
ylabel('y')
zlabel('z')
subplot(1,2,2)
G2=subplot(1,2,2,'Parent',figure1);
CNT=20;
k=round(linspace(1,Max_iterations,CNT)); %随机选CNT个点
% 注意:如果收敛曲线画出来的点很少,随机点很稀疏,说明点取少了,这时应增加取点的数量,100、200、300等,逐渐增加
% 相反,如果收敛曲线上的随机点非常密集,说明点取多了,此时要减少取点数量
iter=1:1:Max_iterations;
if ~strcmp(number,'F16')&&~strcmp(number,'F9')&&~strcmp(number,'F11')  %这里是因为这几个函数收敛太快,不适用于semilogy,直接plot
    semilogy(iter(k),MSCOA_cg_curve(k),'r-','linewidth',1);
    hold on
    semilogy(iter(k),COA_cg_curve(k),'g-','linewidth',1);
else
    plot(iter(k),MSCOA_cg_curve(k),'r-','linewidth',1);
    hold on
    plot(iter(k),COA_cg_curve(k),'g-','linewidth',1);
end
grid on;
title('收敛曲线')
xlabel('迭代次数');
ylabel('适应度值');
box on
legend('MSCOA','COA')
set (gcf,'position', [300,300,800,330])


五、代码获取

99

六、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

根据提供的引用内容,小龙虾优化算法(COA)是一种全局优化算法,模拟了小龙虾的避暑行为、竞争行为和觅食行为。如果您想在Matlab中实现COA算法,可以按照以下步骤进行: 1.首先,您需要定义适应度函数,该函数将根据您的问题进行优化。例如,如果您想最小化一个函数,可以将其定义为负值。 2.接下来,您需要初始化COA算法的参数,例如种群大小,最大迭代次数等。 3.然后,您需要生成初始种群,可以使用随机数生成器或其他方法。 4.接下来,您需要实现COA算法的三个行为:避暑行为、竞争行为和觅食行为。这些行为将根据小龙虾的行为进行模拟,并且将根据适应度函数进行优化。 5.最后,您需要实现COA算法的主循环,该循环将重复执行避暑行为、竞争行为和觅食行为,直到达到最大迭代次数或找到最优解。 以下是一个简单的COA算法Matlab代码示例: ```matlab % 定义适应度函数 fitness = @(x) x^2; % 初始化参数 pop_size = 50; max_iter = 100; dim = 2; lb = -10; ub = 10; % 生成初始种群 pop = lb + (ub-lb)*rand(pop_size,dim); % 主循环 for iter = 1:max_iter % 避暑行为 % TODO: 实现避暑行为 % 竞争行为 % TODO: 实现竞争行为 % 觅食行为 % TODO: 实现觅食行为 % 更新最优解 [best_fit, best_idx] = min(fitness(pop)); best_sol = pop(best_idx,:); end % 输出最优解 disp(['Best solution: ', num2str(best_sol)]); disp(['Best fitness: ', num2str(best_fit)]); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值