[NOIP2012 普及组] 寻宝
题目描述
传说很遥远的藏宝楼顶层藏着诱人的宝藏。小明历尽千辛万苦终于找到传说中的这个藏宝楼,藏宝楼的门口竖着一个木板,上面写有几个大字:寻宝说明书。说明书的内容如下:
藏宝楼共有 N + 1 N+1 N+1 层,最上面一层是顶层,顶层有一个房间里面藏着宝藏。除了顶层外,藏宝楼另有 N N N 层,每层 M M M 个房间,这 M M M 个房间围成一圈并按逆时针方向依次编号为 0 , … , M − 1 0,…,M-1 0,…,M−1。其中一些房间有通往上一层的楼梯,每层楼的楼梯设计可能不同。每个房间里有一个指示牌,指示牌上有一个数字 x x x,表示从这个房间开始按逆时针方向选择第 x x x 个有楼梯的房间(假定该房间的编号为 k k k),从该房间上楼,上楼后到达上一层的 k k k 号房间。比如当前房间的指示牌上写着 2 2 2,则按逆时针方向开始尝试,找到第 2 2 2 个有楼梯的房间,从该房间上楼。如果当前房间本身就有楼梯通向上层,该房间作为第一个有楼梯的房间。
寻宝说明书的最后用红色大号字体写着:“寻宝须知:帮助你找到每层上楼房间的指示牌上的数字(即每层第一个进入的房间内指示牌上的数字)总和为打开宝箱的密钥”。
请帮助小明算出这个打开宝箱的密钥。
输入格式
第一行有两个整数 N N N 和 M M M,之间用一个空格隔开。 N N N 表示除了顶层外藏宝楼共 N N N 层楼, M M M 表示除顶层外每层楼有 M M M 个房间。
接下来 N × M N \times M N×M 行,每行两个整数,之间用一个空格隔开,每行描述一个房间内的情况,其中第 ( i − 1 ) × M + j (i-1) \times M+j (i−1)×M+j 行表示第 i i i 层 j − 1 j-1 j−1 号房间的情况( i = 1 , 2 , … , N i=1,2,…, N i=1,2,…,N; j = 1 , 2 , … , M j=1,2,…,M j=1,2,…,M)。第一个整数表示该房间是否有楼梯通往上一层( 0 0 0 表示没有, 1 1 1 表示有),第二个整数表示指示牌上的数字。注意,从 j j j号房间的楼梯爬到上一层到达的房间一定也是 j j j 号房间。
最后一行,一个整数,表示小明从藏宝楼底层的几号房间进入开始寻宝(注:房间编号从 0 0 0 开始)。
输出格式
一个整数,表示打开宝箱的密钥,这个数可能会很大,请输出对 20123 20123 20123 取模的结果即可。
样例 #1
样例输入 #1
2 3
1 2
0 3
1 4
0 1
1 5
1 2
1
样例输出 #1
5
提示
【数据范围】
对于
50
%
50\%
50% 数据,有
0
<
N
≤
1000
,
0
<
x
≤
1
0
4
0<N≤1000,0<x≤10^4
0<N≤1000,0<x≤104;
对于
100
%
100\%
100% 数据,有
0
<
N
≤
10000
,
0
<
M
≤
100
,
0
<
x
≤
1
0
6
0<N≤10000,0<M≤100,0<x≤10^6
0<N≤10000,0<M≤100,0<x≤106。
NOIP 2012 普及组 第二题
解题思路
本题不难,但有三点要注意:
-
要注意记录每一层楼的有楼梯房间个数
-
记得取模,不然有可能爆掉
-
如果一开始所在房间也有楼梯,记得要算进去
注意到了的话,本题就没有什么难度.
参考代码
#include<bits/stdc++.h>
using namespace std;
const int N=10010,M=200;
int a[N][M],n,m,l,b[N][M],ans,s[N],ls;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=0;j<m;j++){
cin>>b[i][j]>>a[i][j];//输入
s[i]+=b[i][j];
}
}
cin>>l;
for(int i=1;i<=n;i++){
ans+=a[i][l];
ls=a[i][l];
ls=ls%s[i]+s[i];
ls-=b[i][l];
while(ls>0){//二分
l++;
l%=m;
ls-=b[i][l];
}
}
cout<<ans%20123;
}