2024年Python选择题及答案解析【35道】

A、‘Your like python and java’,‘I like python nd jv*’
B、‘I like python and java’,‘I like python nd jv*’
C、‘Your like python and java’,‘I like python nd jva’
D、‘I like python and java’,‘I like python nd jva’

正确答案:C、官方解析: 在Python3中,string.replace(str1, str2,
num=string.count(str1)),把 string 中的 str1 替换成 str2,如果 num 指定,则替换不超过 num
次。 因此 strs.replace(‘I’, ‘Your’) 的结果为:‘Your like python and
java’;strs.replace(‘a’, ‘*’, 2)的结果为:‘I like python nd
j
va’,只会替换字符串中的两个 ‘a’ 字符

单选题

3、在Python3中,下列程序运行结果为:

dicts = {}
dicts[(1, 2)] = ({3, (4, 5)})
print(dicts)

A、报错
B、{(1, 2): {(4, 5), 3}}
C、{(1, 2): [(4, 5), 3]}
D、{(1, 2): [3, 4, 5]}

正确答案:B、官方解析:Python3中,对字典中添加键/值,题目中的字典键为 (1,2),对应的值为 ({3, (4, 5)})

单选题

4、在Python3中,下列程序结果为:

dicts = {'a': 1, 'b': 2, 'c': 3}
print(dicts.pop())

A、{‘c’: 3}
B、报错
C、3
D、(‘c’: 3)

正确答案:B、官方解析:python3中,关于字典的pop方法需要指定删除的key

5、a与b定义如下,下列哪个选项是正确的?

a = ‘123’
b = ‘123’
A、a != B、B、a is B、C、a == 123
D、a + b = 246
正确答案:B(80)
单选题

6、在Python3中,下列程序运行结果为:

lists = [1, 2, 3, 4]
tmp = 0
for i,j in enumerate(lists):
    tmp += i \* j
print(tmp)

A、20
B、30
C、100
D、NonE、正确答案:A、官方解析:
Python3中,enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中,所以程序中表示返回列表的元素和对应下标乘积的累加求和

单选题

7、对于下面的python3函数,如果输入的参数n非常大,函数的返回值会趋近于以下哪一个值(选项中的值用Python表达式来表示)()

import random 
def foo(n):   
        random.seed()
     c1 = 0
     c2 = 0
     for i in range(n):
        x = random.random()
        y = random.random()
        r1 = x \* x + y \* y
        r2 = (1 - x) \* (1 - x) + (1 - y) \* (1 - y)
        if r1 <= 1 and r2 <= 1:
           c1 += 1
         else:
     
目前尚未有针对2024高教社杯全国大学生数学建模竞赛A题的具体答案解析开发布。然而,可以基于以往的比赛经验和解题方法提供一些指导性的建议。 ### 关于数学建模竞赛的一般解答流程 #### 数据预处理阶段 数据清洗和特征提取是解决任何实际问题的第一步。对于数学建模中的复杂数据集,通常需要利用Python或MATLAB等工具完成初步的数据整理工作[^1]。例如,在数据分析过程中可能涉及缺失值填补、异常值检测以及标准化操作: ```python import pandas as pd from sklearn.preprocessing import StandardScaler def preprocess_data(data_path): data = pd.read_csv(data_path) # 处理缺失值 data.fillna(method='ffill', inplace=True) # 去除异常值 (假设使用IQR法) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 filtered_data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis=1)] scaler = StandardScaler() scaled_data = scaler.fit_transform(filtered_data) return scaled_data ``` #### 模型构建与求解 根据具体问题背景选择合适的算法模型至关重要。如果问题是关于分类或者回归预测,则可考虑采用机器学习框架如Scikit-Learn实现支持向量机(SVM)、随机森林(Random Forests)等经典算法;如果是优化类问题则需引入线性规划(LP)/整数规划(IP)[^2]等相关理论和技术手段来设计目标函数并约束条件加以求解。 #### 结果验证与可视化表达 最后一步是对所得结论进行有效性检验并通过图表等形式直观呈现出来以便评审专家更好地理解整个解决方案逻辑链条。Matplotlib 和 Seaborn 是两个非常流行的用于绘制高质量统计图形库之一[^3]: ```python import matplotlib.pyplot as plt import seaborn as sns def plot_results(x_values, y_actual, y_predicted): plt.figure(figsize=(8,6)) sns.lineplot(x=x_values, y=y_actual, label="Actual Values", color="blue") sns.lineplot(x=x_values, y=y_predicted, label="Predicted Values", color="red") plt.title('Comparison of Actual vs Predicted Results') plt.xlabel('X-axis Label') plt.ylabel('Y-axis Label') plt.legend() plt.show() ``` 尽管上述内容涵盖了大部分常规比赛环节所需技能要点,但由于缺乏当前度特定主题描述无法给出更精确指向性意见。因此强烈推荐参赛者密切关注官方最新动态通知获取最权威版本资料参考依据!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值