‘2022-03-27’, ‘2022-03-28’, ‘2022-03-29’, ‘2022-03-30’,
‘2022-03-31’, ‘2022-04-01’, ‘2022-04-04’, ‘2022-04-05’,
‘2022-04-06’], rotation=45)
plt.title(‘某股票收盘价时序图’)
plt.xlabel(‘日期’)
plt.ylabel(‘价格’)
plt.grid(True)
plt.legend()
标出每天的收盘价
for a, b in zip(x, y):
plt.text(a, b+0.01, ‘%.1f’%b, ha=‘center’, va=‘bottom’, fontsize=9)
plt.show()
=============================================================================================
在上例代码的基础之上,添加注释。注释即对图像中某一位置的解释,可以用箭头来指向。
添加注释使用的是plt.annotate()方法
其语法中的常用参数如下
plt.annotate(str,xy,xytext,xycoords,arrowcoords)
其中str即注释要使用的字符串,即注释文本
xy指被注释的坐标点
xytext指注释文本要写在的位置
xycoords是被注释的点的坐标系属性,即以什么样的方式描述该点的坐标。设置值默认为"data",即用(x,y)坐标来描述。其他可以选择的设置值如下,其中figure指的是整个画布作为一个参考系。而axes则表示仅对于其中的一个axes对象区域。
| 设置值 | 描述 |
| — | — |
| data | 默认值,表示被注释点的(x,y)坐标 |
| figure points | 以绘图区的左下角为坐标原点,单位是点数 |
| figure pixels | 以绘图区的左下角为坐标原点,单位是像素数 |
| figure fraction | 以绘图区的左下角为坐标原点,单位是百分比 |
| axes points | 以绘图区的左下角为坐标原点,单位是点数 |
| axes pixels | 以绘图区的左下角为坐标原点,单位是像素数 |
| axes fraction | 以绘图区的左下角为坐标原点,单位是百分比 |
| polar | 不使用本地数据坐标系,使用极坐标描述。 |
arrowprops是一个字典,用来设置箭头的属性。写在这个字典之外的参数都表示的是注释文本的属性。
字典内可以设置的值有
| 设置值 | 描述 |
| — | — |
| width | 箭头的宽度(非头部) |
| headwidth | 箭头头部的宽度 |
| headlength | 箭头头部的长度 |
| facecolor | 箭头的颜色 |
| shrink | 箭头两端收缩的百分比(占总长) |
| ? | 任何matplotlib.patches.FancyArrowPacth中的关键字 |
关于这些参数的进一步解释:其中箭头的总长度先是通过被注释点位置坐标 与 注释文本位置坐标 所决定的,可以通过调节参数arrowprops中的shrink键来进一步调节箭头的长度,shrink表示将箭头缩短的长度占总长度(被注释点位置坐标 与 注释文本位置坐标 决定的长度)的百分比。当不设定shrink时,shrink默认为0,即不缩短。当shrink很大,接近1时,其效果等同于不缩短。
以标出图中的最低价的点为例。在目标位置添加一个红色的箭头,及“最低价”三个字。
其他更多参数,如关于设置注释文本的字体的,c或color表示颜色,fontsize表示字体大小。更多属性自行了解尝试。
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
plt.rcParams[‘axes.unicode_minus’] = False
x = range(9)
y = [5.12, 5.15, 5.13, 5.10, 5.2, 5.25, 5.19, 5.24, 5.31]
c = 0.5 * (min(x) + max(x))
d = min(y) + 0.3 * (max(y)-min(y))
仿水印效果
plt.text(c, d, ‘股市有风险,入市须谨慎’, ha=‘center’, fontsize=30, rotation=-25, c=‘gray’, alpha=0.4)
plt.plot(x, y, label=‘股票A收盘价’, c=‘r’, ls=‘-.’, marker=‘D’, lw=2)
plt.plot([5.09, 5.13, 5.16, 5.12, 5.09, 5.25, 5.16, 5.20, 5.25], label=‘股票B收盘价’, c=‘g’, ls=‘:’, marker=‘H’, lw=4)
plt.xticks(x, [
‘2022-03-27’, ‘2022-03-28’, ‘2022-03-29’, ‘2022-03-30’,
‘2022-03-31’, ‘2022-04-01’, ‘2022-04-04’, ‘2022-04-05’,
‘2022-04-06’], rotation=45)
plt.title(‘某股票收盘价时序图’)
plt.xlabel(‘日期’)
plt.ylabel(‘价格’)
plt.grid(True)
plt.legend()
标出每天的收盘价
for a, b in zip(x, y):
plt.text(a, b+0.01, ‘%.1f’%b, ha=‘center’, va=‘bottom’, fontsize=9)
添加注释
plt.annotate(‘最低价’, (x[y.index(min(y))],min(y)), (x[y.index(min(y))] + 0.5, min(y)), xycoords=‘data’,
arrowprops=dict(facecolor=‘r’, shrink=0.1), c=‘r’,fontsize=15)
plt.show()
下边换一种效果呈现,将提示语“股市有风险,入市需谨慎”字体调大到50,不透明。添加的注释箭头宽度为3,箭头的头部宽度为10,长度为20,缩短0.05,且箭头为绿色,注释字体为红色。代码示例如下:
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
plt.rcParams[‘axes.unicode_minus’] = False
x = range(9)
y = [5.12, 5.15, 5.13, 5.10, 5.2, 5.25, 5.19, 5.24, 5.31]
c = 0.5 * (min(x) + max(x))
d = min(y) + 0.3 * (max(y)-min(y))
plt.plot(x, y, label=‘股票A收盘价’, c=‘k’, ls=‘-.’, marker=‘D’, lw=2)
plt.xticks(x, [
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
加入社区:https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0