Python——类(1)

__new__ 是类方法, __init__ 是实例方法;

重载 __new__ 方法,需要返回类的实例;

一般情况下,我们不需要重载 __new__ 方法。但在某些情况下,我们想控制实例的创建过程,这

时可以通过重载 __new_ 方法来实现。

让我们看一个例子:

1. class A ( object ):

2.          _dict = dict ()

4.          def __new__ ( cls ):

5.                  if ‘key’ in A . _dict :

6.                          print “EXISTS”

7.                         return A . _dict [ ‘key’ ]

8.                 else :

9.                         print “NEW”

10.                        return object . __new__ ( cls )

12.         def __init__ ( self ):

13.                        print “INIT”

14.                         A . _dict [ ‘key’ ] = self

在上面,我们定义了一个类 A ,并重载了 __new__ 方法:当 key 在 A._dict 中

时,直接返回 A._dict[‘key’] ,否则创建实例。

执行情况:

1. >>> a1 = A ()

2. NEW

3. INIT

4. >>> a2 = A ()

5. EXISTS

6. INIT

7. >>> a3 = A ()

8. EXISTS

9. INIT

5.2 str & repr

先看一个简单的例子:

1. class Foo ( object ):

2.          def __init__ ( self , name ):

3.                  self . name = name

5. >>> print Foo ( ‘ethan’ )

6. < __main__ . Foo object at 0x10c37aa50 >

在上面,我们使用 print 打印一个实例对象,但如果我们想打印更多信息呢,比如把 name 也打印

出来,这时,我们可以在类中加入 __str__ 方法,如下:

1. class Foo ( object ):

2.          def __init__ ( self , name ):

3.                  self . name = name

4.          def __str__ ( self ):

5.                  return ‘Foo object (name: %s)’ % self . name

7. >>> print Foo(‘ethan’) # 使用 print

8. Foo object ( name : ethan )

9. >>>

10. >>> str ( Foo ( ‘ethan’ )) # 使用 str

11. ‘Foo object (name: ethan)’

12. >>>

13. >>> Foo ( ‘ethan’ ) # 直接显示

14. < __main__ . Foo at 0x10c37a490 >

可以看到,使用 print 和 str 输出的是 __str__ 方法返回的内容,但如果直接显示则不是,

那能不能修改它的输出呢?当然可以,我们只需在类中加入 __repr__ 方法,比如:

1. class Foo ( object ):

2.          def __init__ ( self , name ):

3.                  self . name = name

4.          def __str__ ( self ):

5.                  return ‘Foo object (name: %s)’ % self . name

6.         def __repr__ ( self ):

7.                  return ‘Foo object (name: %s)’ % self . name

9. >>> Foo ( ‘ethan’ )

10. ‘Foo object (name: ethan)’

可以看到,现在直接使用 Foo(‘ethan’) 也可以显示我们想要的结果了,然而,我们发现上面的代

码中, __str__ 和 __repr__ 方法的代码是一样的,能不能精简一点呢,当然可以,如下:

1. class Foo ( object ):

2.          def __init__ ( self , name ):

3.                  self . name = name

4.          def __str__ ( self ):

5.                  return ‘Foo object (name: %s)’ % self . name

6.          __repr__ = __str__

5.3 iter

在某些情况下,我们希望实例对象可被用于 for…in 循环,这时我们需要在类中定义

__iter__ 和 next (在 Python3 中是 __next__ )方法,其中, __iter__ 返回一

个迭代对象, next 返回容器的下一个元素,在没有后续元素时抛出 StopIteration 异常。

看一个斐波那契数列的例子:

1. class Fib ( object ):

2.          def __init__ ( self ):

3.                  self . a , self . b = 0 , 1

5.          def __iter__ ( self ): # 返回迭代器对象本身

6.                  return self

8.          def next ( self ): # 返回容器下一个元素

9.                  self . a , self . b = self . b , self . a + self . b

10.                return self . a

12. >>> fib = Fib ()

13. >>> for i in fib :

14. … if i > 10 :

15. … break

16. … print i

17. …

18. 1

19. 1

20. 2

21. 3

22. 5

23. 8

5.4 getitem

有时,我们希望可以使用 obj[n] 这种方式对实例对象进行取值,比如对斐波那契数列,我们希望

可以取出其中的某一项,这时我们需要在类中实现 __getitem__ 方法,比如下面的例子:

1. class Fib ( object ):

2.          def __getitem__ ( self , n ):

3.                  a , b = 1 , 1

4.                  for x in xrange ( n ):

5.                          a , b = b , a + b

6.                 return a

8. >>> fib = Fib ()

9. >>> fib [ 0 ], fib [ 1 ], fib [ 2 ], fib [ 3 ], fib [ 4 ], fib [ 5 ]

10. ( 1 , 1 , 2 , 3 , 5 , 8 )

我们还想更进一步,希望支持 obj[1:3] 这种切片方法来取值,这时 __getitem__ 方法传入的参数可能是一个整数,也可能是一个切片对象 slice ,因此,我们需要对传入的参数进行判断,可

以使用 isinstance 进行判断,改后的代码如下:

1. class Fib ( object ):

2.          def __getitem__ ( self , n ):

3.                  if isinstance ( n , slice ): # 如果 n 是 slice 对象

4.                          a , b = 1 , 1

5.                          start , stop = n . start , n . stop

6.                          L = []

7.                         for i in xrange ( stop ):

8.                                 if i >= start :

9.                                          L . append ( a )

10.                                a , b = b , a + b

11.                        return L

12.              if isinstance ( n , int ): # 如果 n 是 int 型

13.                      a , b = 1 , 1

14.                      for i in xrange ( n ):

15.                               a , b = b , a + b

16.                      return a

现在,我们试试用切片方法:

1. >>> fib = Fib ()

2. >>> fib [ 0 : 3 ]

3. [ 1 , 1 , 2 ]

4. >>> fib [ 2 : 6 ]

5. [ 2 , 3 , 5 , 8 ]

上面,我们只是简单地演示了 getitem 的操作,但是它还很不完善,比如没有对负数处理,不支持带

step 参数的切片操作 obj[1:2:5] 等等,读者有兴趣的话可以自己实现看看。

__geitem__ 用于获取值,类似地, __setitem__ 用于设置值, __delitem__ 用于删除

值,让我们看下面一个例子:

1. class Point ( object ):

2.         def __init__ ( self ):

3.                  self . coordinate = {}

5.          def __str__ ( self ):

6.                  return “point(%s)” % self . coordinate

8.          def __getitem__ ( self , key ):

9.                   return self . coordinate . get ( key )

11.        def __setitem__ ( self , key , value ):

12.                 self . coordinate [ key ] = value

14.        def __delitem__ ( self , key ):

15.                 del self . coordinate [ key ]

16.                          print ‘delete %s’ % key

18.        def __len__ ( self ):

19.                 return len ( self . coordinate )

21.         __repr__ = __str__

在上面,我们定义了一个 Point 类,它有一个属性 coordinate (坐标),是一个字典,让我们看

看使用:

1. >>> p = Point ()

2. >>> p [ ‘x’ ] = 2 # 对应于 p.__setitem__(‘x’, 2)

3. >>> p [ ‘y’ ] = 5 # 对应于 p.__setitem__(‘y’, 5)

4. >>> p # 对应于 __repr__

5. point ({ ‘y’ : 5 , ‘x’ : 2 })

6. >>> len ( p ) # 对应于 p.__len__

7. 2

8. >>> p [ ‘x’ ] # 对应于 p.__getitem__(‘x’)

9. 2

10. >>> p [ ‘y’ ] # 对应于 p.__getitem__(‘y’)

11. 5

12. >>> del p [ ‘x’ ] # 对应于 p.__delitem__(‘x’)

13. delete x

14. >>> p

15. point ({ ‘y’ : 5 })

16. >>> len ( p )

17. 1

5.5 getattr

当我们获取对象的某个属性,如果该属性不存在,会抛出 AttributeError 异常,比如:

1. class Point ( object ):

2.          def __init__ ( self , x = 0 , y = 0 ):

3.                  self . x = x

4.                  self . y = y

6. >>> p = Point ( 3 , 4 )

7. >>> p . x , p . y

8. ( 3 , 4 )

9. >>> p . z

10. ---------------------------------------------------------------------------

11. AttributeError Traceback ( most recent call last )

12. < ipython - input - 547 - 6dce4e43e15c > in < module >()

13. ----> 1 p . z

15. AttributeError : ‘Point’ object has no attribute ‘z’

那有没有办法不让它抛出异常呢?当然有,只需在类的定义中加入 __getattr__ 方法,比如:

1. class Point ( object ):

2. def __init__ ( self , x = 0 , y = 0 ):

3. self . x = x

4. self . y = y

5. def __getattr__ ( self , attr ):

6. if attr == ‘z’ :

7. return 0

9. >>> p = Point ( 3 , 4 )

10. >>> p . z

11. 0

现在,当我们调用不存在的属性(比如 z )时,解释器就会试图调用 __getattr__(self, ‘z’)

来获取值,但是,上面的实现还有一个问题,当我们调用其他属性,比如 w ,会返回 None ,因为

__getattr__ 默认返回就是 None ,只有当 attr 等于 ‘z’ 时才返回 0 ,如果我们想让

__getattr__ 只响应几个特定的属性,可以加入异常处理,修改 __getattr__ 方法,如下:

1. def __getattr__ ( self , attr ):

2.          if attr == ‘z’ :

3.                  return 0

4. raise AttributeError ( “Point object has no attribute %s” % attr )

这里再强调一点, __getattr__ 只有在属性不存在的情况下才会被调用,对已存在的属性不会调用

__getattr__ 。

与 __getattr__ 一起使用的还有 __setattr__ , __delattr__ ,类似 obj.attr =value , del obj.attr ,看下面一个例子:

1. class Point ( object ):

2.         def __init__ ( self , x = 0 , y = 0 ):

3.                  self . x = x

4.                  self . y = y

6.          def __getattr__ ( self , attr ):

7.                  if attr == ‘z’ :

8.                          return 0

9. raise AttributeError ( “Point object has no attribute %s” % attr )

11.        def __setattr__ ( self , * args , ** kwargs ):

12.                print ‘call func set attr (%s, %s)’ % ( args , kwargs )

13.                return object . __setattr__ ( self , * args , ** kwargs )

15.        def __delattr__ ( self , * args , ** kwargs ):

16.                print ‘call func del attr (%s, %s)’ % ( args , kwargs )

17.                return object . __delattr__ ( self , * args , ** kwargs )

19. >>> p = Point ( 3 , 4 )

20. call func set attr (( ‘x’ , 3 ), {})

21. call func set attr (( ‘y’ , 4 ), {})

22. >>> p . z

23. 0

24. >>> p . z = 7

25. call func set attr (( ‘z’ , 7 ), {})

26. >>> p . z

27. 7

28. >>> p . w

29. Traceback ( most recent call last ):

30. File “” , line 1 , in < module >

31. File “” , line 8 , in __getattr__

32. AttributeError : Point object has no attribute w

33. >>> p . w = 8

34. call func set attr (( ‘w’ , 8 ), {})

35. >>> p . w

36. 8

37. >>> del p . w

38. call func del attr (( ‘w’ ,), {})

39. >>> p . __dict__

40. { ‘y’ : 4 , ‘x’ : 3 , ‘z’ : 7 }

5.6 call

我们一般使用 obj.method() 来调用对象的方法,那能不能直接在实例本身上调用呢?在

Python 中,只要我们在类中定义 __call__ 方法,就可以对实例进行调用,比如下面的例子:

1. class Point ( object ):

2.          def __init__ ( self , x , y ):

3.                  self . x , self . y = x , y

4.          def __call__ ( self , z ):

5.                  return self . x + self . y + z

使用如下:

1. >>> p = Point ( 3 , 4 )

2. >>> callable ( p ) # 使用 callable 判断对象是否能被调用

3. True

4. >>> p ( 6 ) # 传入参数,对实例进行调用,对应 p.__call__(6)

5. 13 # 3+4+6

可以看到,对实例进行调用就好像对函数调用一样。

__new__ 在 __init__ 之前被调用,用来创建实例。

__str__ 是用 print 和 str 显示的结果, __repr__ 是直接显示的结果。

__getitem__ 用类似 obj[key] 的方式对对象进行取值

__getattr__ 用于获取不存在的属性 obj.attr

__call__ 使得可以对实例进行调用

5.7 小结

__new__ 在 __init__ 之前被调用,用来创建实例。

__str__ 是用 print 和 str 显示的结果, __repr__ 是直接显示的结果。

__getitem__ 用类似 obj[key] 的方式对对象进行取值

__getattr__ 用于获取不存在的属性 obj.attr

__call__ 使得可以对实例进行调用

6 slots 魔法


在 Python 中,我们在定义类的时候可以定义属性和方法。当我们创建了一个类的实例后,我们还可以给该实例绑定任意新的属性和方法。

看下面一个简单的例子:

1. class Point ( object ):

2.          def __init__ ( self , x = 0 , y = 0 ):

3.                  self . x = x

4.                  self . y = y

6. >>> p = Point ( 3 , 4 )

7. >>> p . z = 5 # 绑定了一个新的属性

8. >>> p . z

9. 5

10. >>> p . __dict__

11. { ‘x’ : 3 , ‘y’ : 4 , ‘z’ : 5 }

在上面,我们创建了实例 p 之后,给它绑定了一个新的属性 z ,这种动态绑定的功能虽然很有用,但它的代价是消耗了更多的内存。

因此,为了不浪费内存,可以使用 __slots__ 来告诉 Python 只给一个固定集合的属性分配空

间,对上面的代码做一点改进,如下:

1. class Point ( object ):

2.         __slots__ = ( ‘x’ , ‘y’ ) # 只允许使用 x 和 y

4.          def __init__ ( self , x = 0 , y = 0 ):

5.                  self . x = x

6.                 self . y = y

上面,我们给 __slots__ 设置了一个元组,来限制类能添加的属性。现在,如果我们想绑定一个

新的属性,比如 z ,就会出错了,如下:

1. >>> p = Point ( 3 , 4 )

2. >>> p . z = 5

3. ---------------------------------------------------------------------------

4. AttributeError Traceback ( most recent call last )

5. < ipython - input - 648 - 625ed954d865 > in < module >()

6. ----> 1 p . z = 5

8. AttributeError : ‘Point’ object has no attribute ‘z’

使用 __slots__ 有一点需要注意的是, __slots__ 设置的属性仅对当前类有效,对继承的子

类不起效,除非子类也定义了 __slots__ ,这样,子类允许定义的属性就是自身的 slots 加上父

类的 slots 。

7 使用 @property


在使用 @property 之前,让我们先来看一个简单的例子:

1. class Exam ( object ):

2.          def __init__ ( self , score ):

3.                  self . _score = score

5.          def get_score ( self ):

6.                  return self . _score

8.          def set_score ( self , val ):

9.                  if val < 0 :

10.                        self . _score = 0

11.                elif val > 100 :

12.                        self . _score = 100

13.                else :

14.                        self . _score = val

16. >>> e = Exam ( 60 )

17. >>> e . get_score ()

18. 60

19. >>> e . set_score ( 70 )

20. >>> e . get_score ()

21. 70

在上面,我们定义了一个 Exam 类,为了避免直接对 _score 属性操作,我们提供了

get_score 和 set_score 方法,这样起到了封装的作用,把一些不想对外公开的属性隐蔽起来,

而只是提供方法给用户操作,在方法里面,我们可以检查参数的合理性等。

这样做没什么问题,但是我们有更简单的方式来做这件事, Python 提供了 property 装饰器,被

装饰的方法,我们可以将其『当作』属性来用,看下面的例子:

1. class Exam ( object ):

2.          def __init__ ( self , score ):

3.                  self . _score = score

5.          @property

6.          def score ( self ):

7.                  return self . _score

9.          @score . setter

10.         def score ( self , val ):

11.                 if val < 0 :

12.                         self . _score = 0

13.                elif val > 100 :

14.                        self . _score = 100

15.                else :

16.                        self . _score = val

18. >>> e = Exam ( 60 )

19. >>> e . score

20. 60

21. >>> e . score = 90

22. >>> e . score

23. 90

24. >>> e . score = 200

25. >>> e . score

26. 100

在上面,我们给方法 score 加上了 @property ,于是我们可以把 score 当成一个属性来用,

此时,又会创建一个新的装饰器 score.setter ,它可以把被装饰的方法变成属性来赋值。

另外,我们也不一定要使用 score.setter 这个装饰器,这时 score 就变成一个只读属性了:

1. class Exam ( object ):

2.          def __init__ ( self , score ):

3.                  self . _score = score

5.          @property

6.          def score ( self ):

7.                  return self . _score

9. >>> e = Exam ( 60 )

10. >>> e . score

11. 60

12. >>> e . score = 200 # score 是只读属性,不能设置值

13. ---------------------------------------------------------------------------

14. AttributeError Traceback ( most recent call last )

15. < ipython - input - 676 - b0515304f6e0 > in < module >()

16. ----> 1 e . score = 200

18. AttributeError : can 't set attribute

@property 把方法『变成』了属性

8 你不知道的 super


在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能,这时,我们就需要调用父类的方法了,可通过使用 super 来实现,比如:

1. class Animal ( object ):

2.          def __init__ ( self , name ):

3.                  self . name = name

4.          def greet ( self ):

5.                  print ‘Hello, I am %s.’ % self . name

7. class Dog ( Animal ):

8.          def greet ( self ):

9.                  super ( Dog , self ). greet () # Python3 可使用 super().greet()

10.                 print ‘WangWang…’

在上面, Animal 是父类, Dog 是子类,我们在 Dog 类重定义了 greet 方法,为了能同时实现

父类的功能,我们又调用了父类的方法,看下面的使用:

1. >>> dog = Dog ( ‘dog’ )

2. >>> dog . greet ()

3. Hello , I am dog .

4. WangWang …

super 的一个最常见用法可以说是在子类中调用父类的初始化方法了,比如:

1. class Base ( object ):

2.          def __init__ ( self , a , b ):

3.                  self . a = a

4.                  self . b = b

6. class A ( Base ):

7.          def __init__ ( self , a , b , c ):

8.

super ( A , self ). __init__ ( a , b ) # Python3 可使用 super().__init__(a, b)

9.                  self . c = c

8.1 深入 super()

看了上面的使用,你可能会觉得 super 的使用很简单,无非就是获取了父类,并调用父类的方 法。其实,在上面的情况下, super 获得的类刚好是父类,但在其他情况就不一定了, super 其实和

父类没有实质性的关联。

让我们看一个稍微复杂的例子,涉及到多重继承,代码如下:

1. class Base ( object ):

2.         def __init__ ( self ):

3.                  print “enter Base”

4.                  print “leave Base”

6. class A ( Base ):

7.          def __init__ ( self ):

8.                  print “enter A”

9.                  super ( A , self ). __init__ ()

10.                print “leave A”

12. class B ( Base ):

13.        def __init__ ( self ):

14.                print “enter B”

15.                super ( B , self ). __init__ ()

16.                print “leave B”

18. class C ( A , B ):

19.        def __init__ ( self ):

20.                print “enter C”

21.                super ( C , self ). __init__ ()

22.                print “leave C”

其中, Base 是父类, A, B 继承自 Base, C 继承自 A, B ,它们的继承关系是一个典型的『菱形继

承』,如下:

1. Base

2. / \

3. / \

4. A B

5. \ /

6. \ /

7. C

现在,让我们看一下使用:

1. >>> c = C ()

2. enter C

3. enter A

4. enter B

5. enter Base

6. leave Base

7. leave B

8. leave A

9. leave C

如果你认为 super 代表『调用父类的方法』,那你很可能会疑惑为什么 enter A 的下一句不是

enter Base 而是 enter B 。原因是, super 和父类没有实质性的关联,现在让我们搞清

super 是怎么运作的。

8.2 MRO 列表

事实上,对于你定义的每一个类, Python 会计算出一个方法解析顺序( Method Resolution

Order, MRO )列表,它代表了类继承的顺序,我们可以使用下面的方式获得某个类的 MRO 列表:

1. >>> C . mro () # or C.__mro__ or C().__class__.mro()

2. [ __main__ . C , __main__ . A , __main__ . B , __main__ . Base , object ]

那这个 MRO 列表的顺序是怎么定的呢,它是通过一个 C3 线性化算法 来实现的,这里我们就不去深究

这个算法了,感兴趣的读者可以自己去了解一下,总的来说,一个类的 MRO 列表就是合并所有父类的

MRO 列表,并遵循以下三条原则:

子类永远在父类前面

如果有多个父类,会根据它们在列表中的顺序被检查

如果对下一个类存在两个合法的选择,选择第一个父类

8.3 super 原理

super 的工作原理如下:

1. def super ( cls , inst ):

2.          mro = inst . __class__ . mro ()

3.          return mro [ mro . index ( cls ) + 1 ]

其中, cls 代表类, inst 代表实例,上面的代码做了两件事:

获取 inst 的 MRO 列表

查找 cls 在当前 MRO 列表中的 index, 并返回它的下一个类,即 mro[index + 1]

当你使用 super(cls, inst) 时, Python 会在 inst 的 MRO 列表上搜索 cls 的下一个类。

现在,让我们回到前面的例子。

首先看类 C 的 __init__ 方法:

1. super ( C , self ). __init__ ()

这里的 self 是当前 C 的实例, self. class .mro() 结果是:

1. [ __main__ . C , __main__ . A , __main__ . B , __main__ . Base , object ]

可以看到, C 的下一个类是 A ,于是,跳到了 A 的 __init__ ,这时会打印出 enter A ,并执

行下面一行代码:

1. super ( A , self ). __init__ ()

注意,这里的 self 也是当前 C 的实例, MRO 列表跟上面是一样的,搜索 A 在 MRO 中的下一个

类,发现是 B ,于是,跳到了 B 的 __init__ ,这时会打印出 enter B ,而不是 enter

Base 。

整个过程还是比较清晰的,关键是要理解 super 的工作方式,而不是想当然地认为 super 调用了父

类的方法。

事实上, super 和父类没有实质性的关联。

super(cls, inst) 获得的是 cls 在 inst 的 MRO 列表中的下一个类

8.4 陌生的 metaclass

Python 中的元类( metaclass )是一个深度魔法,平时我们可能比较少接触到元类,本文将通过一些简单的例子来理解这个魔法。

在 Python 中,一切皆对象。字符串,列表,字典,函数是对象,类也是一个对象,因此你可以:

把类赋值给一个变量

把类作为函数参数进行传递

把类作为函数的返回值

在运行时动态地创建类

看一个简单的例子:

1. class Foo ( object ):

2.          foo = True

4. class Bar ( object ):

5.          bar = True

7. def echo ( cls ):

8.          print cls

10. def select ( name ):

11.          if name == ‘foo’ :

12.                 return Foo # 返回值是一个类

13.          if name == ‘bar’ :

14.                 return Bar

16. >>> echo ( Foo ) # 把类作为参数传递给函数 echo

17. < class ‘__main__.Foo’ >

18. >>> cls = select ( ‘foo’ ) # 函数 select 的返回值是一个类,把它赋给变量 cls

19. >>> cls

20. __main__ . Foo

8.5 熟悉又陌生的 type

在日常使用中,我们经常使用 object 来派生一个类,事实上,在这种情况下, Python 解释器会

调用 type 来创建类。

这里,出现了 type ,没错,是你知道的 type ,我们经常使用它来判断一个对象的类型,比

如:

1. class Foo ( object ):

2.          Foo = True

4. >>> type ( 10 )

5. < type ‘int’ >

6. >>> type ( ‘hello’ )

7. < type ‘str’ >

8. >>> type ( Foo ())

9. < class ‘__main__.Foo’ >

10. >>> type ( Foo )

11. < type ‘type’ >

事实上, type 除了可以返回对象的类型,它还可以被用来动态地创建类(对象)。下面,我们看

几个例子,来消化一下这句话。

使用 type 来创建类(对象)的方式如下:

type( 类名 , 父类的元组(针对继承的情况,可以为空),包含属性和方法的字典(名称和值) )

8.6 最简单的情况

假设有下面的类:

1. class Foo ( object ):

2.         pass

现在,我们不使用 class 关键字来定义,而使用 type ,如下:

1. Foo = type ( ‘Foo’ , ( object , ), {}) # 使用 type 创建了一个类对象

上面两种方式是等价的。我们看到, type 接收三个参数:

第 1 个参数是字符串 ‘Foo’ ,表示类名

第 2 个参数是元组 (object, ) ,表示所有的父类

第 3 个参数是字典,这里是一个空字典,表示没有定义属性和方法。

在上面,我们使用 type() 创建了一个名为 Foo 的类,然后把它赋给了变量 Foo ,我们当然可

以把它赋给其他变量,但是,此刻没必要给自己找麻烦。

接着,我们看看使用:

1. >>> print Foo

2. < class ‘__main__.Foo’ >

3. >>> print Foo ()

4. < __main__ . Foo object at 0x10c34f250 >

假设有下面的类:

1. class Foo ( object ):

2.         foo = True

3.          def greet ( self ):

4.                  print ‘hello world’

5.                  print self . foo

用 type 来创建这个类,如下:

1. def greet ( self ):

2.          print ‘hello world’

3.          print self . foo

5. Foo = type ( ‘Foo’ , ( object , ), { ‘foo’ : True , ‘greet’ : greet })

上面两种方式的效果是一样的,看下使用:

1. >>> f = Foo ()

2. >>> f . foo

3. True

4. >>> f . greet

5. < bound method Foo . greet of < __main__ . Foo object at 0x10c34f890 >>

6. >>> f . greet ()

7. hello world

8. True

8.7 继承的情况

再来看看继承的情况,假设有如下的父类:

1. class Base ( object ):

2.          pass

我们用 Base 派生一个 Foo 类,如下:

1. class Foo ( Base ):

2.          foo = True

改用 type 来创建,如下:

1. Foo = type ( ‘Foo’ , ( Base , ), { ‘foo’ : True })

9 元类


9.1 概念

元类( metaclass )是用来创建类(对象)的可调用对象。这里的可调用对象可以是函数或者类等。但一般情况下,我们使用类作为元类。对于实例对象、类和元类,我们可以用下面的图来描述:

我们在前面使用了 type 来创建类(对象),事实上, type 就是一个元类。

那么,元类到底有什么用呢?要你何用 …

元类的主要目的是为了控制类的创建行为。我们还是先来看看一些例子,以消化这句话。

9.2 元类的使用

先从一个简单的例子开始,假设有下面的类:

1. class Foo ( object ):

2.          name = ‘foo’

3.          def bar ( self ):

4.                  print ‘bar’

现在我们想给这个类的方法和属性名称前面加上 my_ 前缀,即 name 变成 my_name , bar 变成

my_bar ,另外,我们还想加一个 echo 方法。当然,有很多种做法,这里展示用元类的做法。

  1. 首先,定义一个元类,按照默认习惯,类名以 Metaclass 结尾,代码如下:

1. class PrefixMetaclass ( type ):

2.          def __new__ ( cls , name , bases , attrs ):

3.                  # 给所有属性和方法前面加上前缀 my_

4.                  _attrs = (( ‘my_’ + name , value ) for name , value in attrs . items ())

6.                 _attrs = dict (( name , value ) for name , value in _attrs ) # 转化为字典

7.                 _attrs [ ‘echo’ ] = lambda self , phrase : phrase # 增加了一个 echo 方法

9.                 return type . __new__ ( cls , name , bases , _attrs ) # 返回创建后的类

上面的代码有几个需要注意的点:

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

加入社区:https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值