题目描述
某个充电站,可提供n个充电设备,每个充电设备均有对应的输出功率。任意个充电设备组合的输出功率总和,均构成功率集合P的1个元素。功率集合P的最优元素,表示最接近充电站最大输出功率p_max的元素。
输入描述
输入为3行:
- 第1行为充电设备个数n
- 第2行为每个充电设备的输出功率
- 第3行为充电站最大输出功率p_max
输出描述
功率集合P的最优元素
备注
- 充电设备个数 n > 0
- 最优元素必须小于或等于充电站最大输出功率p_max
用例
输入 | 4 50 20 20 60 90 |
输出 | 90 |
说明 | 当充电设备输出功率50、20、20组合时,其输出功率总和为90,最接近充电站最大充电输出功率,因此最优元素为90。 |
输入 | 2 50 40 30 |
输出 | 0 |
说明 | 所有充电设备的输出功率组合,均大于充电站最大充电输出功率30,此时最优元素值为0。 |
解题思路分析
题目要求我们找到一个最优功率元索,使得在充电设备的输出功率组合中,其均值最接近充电站的最大输出功率 p_max
,并且这个最优功率元素需要小于等于 p_max
。
要解决这个问题,步骤如下:
-
输入解析:
- 读取充电设备的数量
n
。 - 读取每个充电设备的输出功率。
- 读取充电站的最大输出功率
p_max
。
- 读取充电设备的数量
-
计算所有组合的总功率:
- 生成所有可能的充电设备功率组合,并计算它们的总和。
- 计算每个组合的平均值,并与
p_max
比较。
-
筛选最优解:
- 找出所有组合中最接近但不大于
p_max
的平均值。 - 输出对应的最优功率元素。
- 找出所有组合中最接近但不大于
C++ 代码实现
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> power(n);
for (int i = 0; i < n; ++i) {
cin >> power[i];
}
int p_max;
cin >> p_max;
int best_power = 0;
// 生成所有组合的功率和,并找出最接近 p_max 的
int combination_count = 1 << n;
for (int i = 1; i < combination_count; ++i) {
int sum_power = 0;
int element_count = 0;
for (int j = 0; j < n; ++j) {
if (i & (1 << j)) {
sum_power += power[j];
++element_count;
}
}
if (element_count > 0) {
int avg_power = sum_power / element_count;
if (avg_power <= p_max && avg_power > best_power) {
best_power = avg_power;
}
}
}
cout << best_power << endl;
return 0;
}
Python 代码实现
from itertools import combinations
def find_best_power(n, power, p_max):
best_power = 0
for r in range(1, n + 1):
for combo in combinations(power, r):
avg_power = sum(combo) // r
if avg_power <= p_max and avg_power > best_power:
best_power = avg_power
return best_power
def main():
n = int(input())
power = list(map(int, input().split()))
p_max = int(input())
result = find_best_power(n, power, p_max)
print(result)
if __name__ == "__main__":
main()
解题说明
-
组合生成:利用位操作(C++)或者
combinations
函数(Python)生成所有可能的充电设备组合,计算这些组合的功率总和。 -
平均功率计算:对每个组合的总功率进行平均,并检查是否符合不超过
p_max
的条件。 -
最优功率筛选:在所有符合条件的组合中,找到最大且不超过
p_max
的平均功率,并输出。 -
优化:题目要求是找到接近
p_max
的组合,所以我们可以提前筛选那些均值过大的组合,减少不必要的计算。