继续预训练 LLM ——数据筛选的思路

继续预训练 LLM 会导致遗忘原有的知识,为了避免这种灾难性遗忘,有一些简单的小技巧:

  1. 在训练语料中加入通用知识相关的语料。
  2. 模型筛选或早停,选择新旧知识的平衡点。
  3. 调整一些超参数,比如学习率。

这篇笔记记录了来自论文 Efficient Continual Pre-training for Building Domain Specific Large Language Models 的另一个小技巧——数据筛选。作者仅通过 10% 的数据,训练了个金融领域的 LLM,其相较于不筛选时,F1 提高了 3 个点。

总体思路

筛选数据时,有两种情况;

  1. 当有具体任务相关的数据,相当于有测试集,这时,可用 text embedding 模型向量化后,通过相似度筛选数据。该方法称为 Efficient Task-Similar Domain-adaptive Continual Pre-training(ETS-DACP)。
  2. 当没有任务相关的数据时,这时,可通过 困惑度(PPL, ETA-DACP-ppl)和 词性熵(part of speech entropy, ETA-DACP-ent)来选择数据。该方法称为 Efficient Task-Agnostic Domain-adaptive Continual Pre-training(ETA-DACP)。

通过这三个关键指标(余弦相似度、PPL、POS-Entropy)对数据打分后,接下来用什么样的策略喂给 LLM 呢?作者提供了两种策略:

  • 硬采样(hard sample):用指标排序后,选择前 p% 的数据,论文中 p=10。
  • 软采样(soft sample)ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值