继续预训练 LLM 会导致遗忘原有的知识,为了避免这种灾难性遗忘,有一些简单的小技巧:
这篇笔记记录了来自论文 Efficient Continual Pre-training for Building Domain Specific Large Language Models 的另一个小技巧——数据筛选。作者仅通过 10% 的数据,训练了个金融领域的 LLM,其相较于不筛选时,F1 提高了 3 个点。
总体思路
筛选数据时,有两种情况;
- 当有具体任务相关的数据,相当于有测试集,这时,可用 text embedding 模型向量化后,通过相似度筛选数据。该方法称为 Efficient Task-Similar Domain-adaptive Continual Pre-training(ETS-DACP)。
- 当没有任务相关的数据时,这时,可通过 困惑度(PPL, ETA-DACP-ppl)和 词性熵(part of speech entropy, ETA-DACP-ent)来选择数据。该方法称为 Efficient Task-Agnostic Domain-adaptive Continual Pre-training(ETA-DACP)。
通过这三个关键指标(余弦相似度、PPL、POS-Entropy)对数据打分后,接下来用什么样的策略喂给 LLM 呢?作者提供了两种策略:
- 硬采样(hard sample):用指标排序后,选择前 p% 的数据,论文中 p=10。
- 软采样(soft sample)ÿ