小米大模型面试180题
1、目前比较受欢迎的开源大模型有哪些?
GPT系列:由OpenAl开发的生成式预训练模型,如 GPT-3。
BERT系列:由Google开发的转换式预训练模型,如BERT、RoBERTa等。
T5系列:由Google开发的基于Transformer的编码器-解码器模型,如T5、mT5等。
2、微调模型需要多大显存?
微调模型需要的显存取决于模型的规模、任务复杂度、数据量等因素。一般来说,微调模型需 要的显存通常比预训练模型少,因为微调涉及到更新的参数较少。然而,具体需要的显存仍然需要根据实际情况进行评估和调整。
3、如何提升大模型的检索效果?
-
优化索引:使用更高效的索引结构,如倒排索引、BM25等。
-
特征工程:提取和利用有效的特征,如文本向量、词频等。
-
模型选择:选择合适的检索模型,如基于向量的相似度计算、基于排序的模型等。
-
训练策略:使用训练策略,如多任务学习、知识蒸馏等,来提高模型的性能。
-
训练策略:使用训练策略,如多任务学习、知识蒸馏等,来提高模型的性能。
4、如何让大模型处理更长的文本?
-
使用模型架构,如Transformer, 它可以有效地处理长序列。
-
使用内存机制,如外部记忆或缓存,来存储和检索长文本中的信息。
-
使用分块方法,将长文本分割成更小的部分,然后分别处理这些部分。
-
大模型参数微调、训练、推理
5、想让模型学习某领域或行业知识,是应该预训练还是应该微调?
为了让模型学习某个领域或行业的知识,通常建议先进行预训练,以学习通用的语言知识和模式。预训练可以帮助模型建立强大的语言表示,并提高模型的泛化能力。
然后,可以通过微调来注入特定领域或行业的知识,使模型能够更好地适应特定的任务和应用场景。
6、想让模型学习某领域或行业知识,是应该预训练还是应该微调?
-
选择合适的预训练目标和任务:确定模型将学习哪些通用的语言知识,以及针对哪些特定任务进行优化。
-
收集和准备数据:收集大量、多样化的数据,包括通用数据和特定领域的数据,进行清洗和预处理。
-
选择模型架构:选择一个适合的模型架构,如Transformer, 并确定模型的规模和层数。
-
定义训练流程:设置训练参数,如学习率、批量大小、训练轮数等,并选择合适的优化器和损失函数。
-
训练模型:使用准备好的数据和训练流程开始训练模型,监控训练过程中的性能和资源使用。
-
评估和调优:在训练过程中定期评估模型的性能,并根据需要调整训练参数和模型架构。
面试总结
面试真的不难,很多问题都背到过。先过一遍整理好的大模型面试题,然后刷题,刷题可以进一步加深印象。网上也有很多题库资源,牛客、北森、甚至小红书都有,我就是在这个上面刷的题(题库界面放后面了)。因为只有刷题功能有点单一,毕竟是为了面试做准备,如果有额外附加面试经验分享能够让准备更加的全面所以我才用牛客比较多,当然大家也可以根据自己的需要进行选择,祝大家都能顺利拿到 offer
如何学习大模型技术,享受AI红利?
面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,详尽的全套学习资料,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
无论是初学者,还是希望在某一细分领域深入发展的资深开发者,这样的学习路线图都能够起到事半功倍的效果。它不仅能够节省大量时间,避免无效学习,更能帮助开发者建立系统的知识体系,为职业生涯的长远发展奠定坚实的基础。
这份完整版的AI大模型全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的AI大模型全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】