MATLAB未戴口罩识别

  1. 可以使用监督学习或者无监督学习的方法进行,从互联网上下载收集含口罩和不含口罩图片,监督学习需要对图片进行标注,构建数据集。1)使用传统机器学习方法进行。首先可以使用图像特征提取的一些方法进行low-level或high-level的特征提取,将提取到的特征输入分类机中进行训练。使用训练好的模型对新的数据进行预测属于含口罩类还是不含口罩类即可。2)使用深度学习方法进行。比如著名的AlexNet、ResNet等等,matlab预置了多种深度学习模型,可以直接拿来使用:

具体使用方法可以参考相应库对应的帮助文档。

2. 也可以使用未标注的数据集进行无监督学习。传统的比如比如PCA、K-means等,深度的比如DCN网络、Deep Cluster、IIC-CNN等等,方法是五花八门,性能各有差异。

3. 另外需要注意的一点可能是样本不对称问题,通常来讲,含口罩图片比不含口罩图片数量少,在这方面也有一些常见的策略可尝试使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值