大语言模型时代,推荐系统与搜索的融合与创新

在数字化信息爆炸的时代,推荐系统和搜索已成为我们日常生活中不可或缺的工具。从购物网站上的个性化推荐,到搜索引擎中精准的结果呈现,它们帮助我们从海量信息中快速找到所需。而随着大语言模型(LLMs)的崛起,这两者正迎来深刻的变革与融合。

一、推荐系统与搜索的演变

推荐系统和搜索的发展历程中,一直从语言建模中汲取灵感。早期,Word2vec被用于学习项目嵌入,GRU、Transformer和BERT等技术则用于预测下一个最佳项目。如今,大语言模型的浪潮席卷而来,为推荐系统和搜索带来了新的机遇和挑战。

二、LLM助力推荐系统:突破传统局限

多模态融合:更懂内容的推荐

推荐系统越来越多地采用语言模型和多模态内容,以克服传统基于ID方法的局限。例如,YouTube的语义ID方法,通过变压器视频编码器生成密集内容嵌入,再通过残差量化变分自编码器(RQ-VAE)将其压缩为离散的语义ID。这种紧凑的表示方式不仅提高了效率,还在冷启动场景下表现更佳。

快手的M3CSR框架则引入了多模态内容嵌入,将视觉、文本、音频等信息通过K-means聚类成可训练的类别ID。这种双塔架构,分别处理用户侧和项目侧,优化了在线推理效率。

数据生成与分析:丰富数据,提升质量

LLMs被广泛用于丰富数据,解决数据稀缺问题。Bing利用LLMs生成高质量的网页元数据,改善网页推荐;Indeed使用LLM生成的标签过滤不良工作匹配;Yelp将LLMs集成到查询理解流程中,提升查询分割和评论亮点选择的准确性。

训练范式创新:规模化、高效化

从大型语言模型和计算机视觉领域借鉴的训练方法,如缩放定律、知识蒸馏、迁移学习和LoRAs等,正被应用于推荐系统。研究发现,随着模型规模和数据量的增加,推荐系统性能呈幂律关系提升。同时,通过知识蒸馏,可以将大型模型的知识迁移到更小、更高效的模型中。

三、LLM赋能搜索:更智能、更精准

语义理解与查询推荐

LLMs在搜索中的应用,不仅提升了对用户查询语义的理解,还能够生成更丰富的搜索建议。Spotify构建了混合查询推荐系统,结合目录标题、播放列表名称、用户搜索历史等多种来源生成探索性搜索查询建议。

亚马逊将LLMs集成到播放列表搜索管道中,解决了数据稀缺、元数据丰富和可扩展评估等挑战。通过LLMs生成的详细描述,为社区播放列表创建了丰富的元数据。

统一架构:搜索与推荐的融合

统一的系统架构,将搜索和推荐融合在同一基础设施内,正逐渐成为趋势。LinkedIn的360Brew和Netflix的UniCoRn等模型,展示了统一模型在多任务训练中的优势,能够同时处理多样化的检索和排名任务。

Spotify的联合生成检索模型,在搜索和推荐数据上进行训练,多任务模型在召回率上显著优于单任务模型。这种融合不仅提高了性能,还降低了运营复杂性。

四、未来展望

大语言模型为推荐系统和搜索带来了前所未有的机遇。通过多模态融合、数据生成与分析、训练范式创新以及统一架构的探索,我们正见证着这两个领域从传统方法向智能化、个性化方向的深刻变革。未来,随着技术的不断进步和应用场景的拓展,推荐系统和搜索将更加智能、精准,为用户创造更加便捷、高效的信息获取体验。

科技脉搏,每日跳动。

与敖行客 Allthinker一起,创造属于开发者的多彩世界。

图片

- 智慧链接 思想协作 -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值