Ollama 结构化输出:引领模型输出新范式

在人工智能技术迅猛发展的今天,语言模型的应用已经渗透到各个领域。然而,如何精准地控制模型输出,使其满足特定的格式要求,一直是开发者和用户面临的挑战之一。Ollama 作为一款备受关注的模型框架,近期推出的结构化输出功能,为解决这一问题提供了强有力的解决方案。这一创新不仅提升了模型输出的可靠性和一致性,还极大地拓展了其应用场景的广度和深度。

目录

一、结构化输出功能概述

(一)功能简介

(二)适用场景

(三)与传统方式对比

二、如何使用结构化输出

(一)升级相关库

(二)在请求中指定格式

​(三)示例演示

三、使用技巧与注意事项

(一)模式定义工具选择

(二)提示优化

(三)常见问题与解决方法

四、结构化输出对人工智能应用的影响

(一)提升应用的可靠性和稳定性

(二)拓展应用的创新空间

(三)推动行业发展与标准化进程


一、结构化输出功能概述

(一)功能简介

Ollama 现在支持结构化输出,这意味着可以通过 JSON 模式来约束模型的输出格式。无论是解析文档数据、从图像中提取信息,还是对语言模型的所有响应进行结构化处理,这一功能都能发挥重要作用。与传统的 JSON 模式相比,结构化输出具有更高的可靠性和一致性,能够为开发者提供更精确、可预测的结果。

(二)适用场景

  1. 文档数据解析

    • 在处理大量文档时,结构化输出可以帮助我们快速准确地提取关键信息。例如,从一份包含公司财务报表的文档中,我们可以定义一个 JSON 模式,让模型按照指定的格式输出财务数据,如收入、支出、利润等。这样,我们无需手动筛选和整理数据,就能直接获取结构化的财务信息,大大提高了工作效率。

    • 在学术研究中,对于文献的分析也变得更加高效。研究者可以定义模式来提取文献中的研究方法、实验结果、结论等关键部分,方便进行数据汇总和对比分析。

  2. 图像数据提取

    • 结合视觉模型,结构化输出可用于图像描述任务。比如,对于一张包含多个物体的图片,我们可以设定模式让模型输出每个物体的名称、置信度、属性,以及整个场景的描述、颜色、时间和环境等信息。在智能安防领域,这有助于快速识别监控画面中的关键元素,如人物、车辆、行为等,为安防决策提供准确依据。

    • 在电商领域,通过对商品图片的分析,提取商品的特征、颜色、款式等结构化信息,能够为用户提供更精准的商品推荐,提升购物体验。

  3. 语言模型响应结构化

    • 在智能客服系统中,结构化输出确保了回答的一致性和规范性。无论用户提出何种问题,模型都能按照预定义的模式给出清晰、有条理的回答,例如包含问题解决方案、相关建议、参考链接等部分。这不仅提高了客服效率,还提升了用户满意度。

    • 在内容生成方面,如新闻报道、文章写作等,结构化输出可以使生成的内容符合特定的格式要求,如标题、正文、段落结构等,便于编辑和发布。

(三)与传统方式对比

传统的模型输出往往是自由形式的文本,这在处理和分析数据时带来了诸多不便。例如,在处理大量文本数据时,需要花费大量时间和精力进行数据清洗和结构化处理。而结构化输出直接按照定义好的 JSON 模式生成结果,数据格式统一、清晰,易于后续的处理、存储和分析。在数据一致性方面,传统方式可能因模型的随机性导致输出格式不稳定,而结构化输出则能有效避免这一问题,提供可靠的结果。

二、如何使用结构化输出

(一)升级相关库

  1. Python 库升级:使用以下命令将 Ollama Python 库升级到最新版本:
pip install -U ollama
  • 升级后,即可在 Python 代码中使用结构化输出功能。

    2. JavaScript 库升级:对于 JavaScript 用户,使用以下命令安装或升级 Ollama JavaScript 库:

npm i ollama

(二)在请求中指定格式

  1. cURL 请求方式:在使用 cURL 向 Ollama 模型发送请求时,可以通过 format 参数指定 JSON 模式。例如,以下是一个查询加拿大信息并要求以特定格式返回的 cURL 请求示例:
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "llama3.1",
"messages": [{"role": "user", "content": "Tell me about Canada."}],
"stream": false,
"format": {
"type": "object",
"properties": {
"name": {
"type": "string"
         },
"capital": {
"type": "string"
         },
"languages": {
"type": "array",
"items": {
"type": "string"
           }
         }
       },
"required": [
"name",
"capital", 
"languages"
       ]
     }
   }'
  • 模型将根据指定的格式返回响应,如:

   {
"capital": "Ottawa",
"languages": [
"English",
"French"
     ],
"name": "Canada"
   }

2. Python 库使用方式:在 Python 中,使用 Ollama 库时,可以将 JSON 模式作为字典或使用 Pydantic(推荐)来序列化模式,并将其传递给 format 参数。以下是一个示例:

from ollama import chat
from pydantic import BaseModel
class Country(BaseModel):
     name: str
     capital: str
     languages: list[str]
   response = chat(
     messages=[
       {
'role': 'user',
'content': 'Tell me about Canada.',
       }
     ],
     model='llama3.1',
     format=Country.model_json_schema(),
   )
   country = Country.model_validate_json(response.message.content)
   print(country)
  • 输出结果为:

 name='Canada' capital='Ottawa' languages=['English', 'French']

3. JavaScript 库使用方式:在 JavaScript 中,使用 Ollama 库时,可以将 JSON 模式作为对象或使用 Zod(推荐)来序列化模式,并传递给 format 参数。示例如下:

import ollama from 'ollama';
import { z } from 'zod';
import { zodToJsonSchema } from 'zod-to-json-schema';
const Country = z.object({
name: z.string(),
capital: z.string(), 
languages: z.array(z.string()),
   });
const response = await ollama.chat({
model: 'llama3.1',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: zodToJsonSchema(Country),
   });
const country = Country.parse(JSON.parse(response.message.content));
console.log(country);
  • 输出结果为:

   {
"name": "Canada",
"capital": "Ottawa",
"languages": [ "English", "French" ],
   }

​(三)示例演示

  1. 数据提取示例:假设我们要从一段关于宠物的文本中提取信息,我们可以定义如下的模式:
from ollama import chat
from pydantic import BaseModel
​
class Pet(BaseModel):
     name: str
     animal: str
     age: int
     color: str | None
     favorite_toy: str | None
​
class PetList(BaseModel):
     pets: list[Pet]
​
   response = chat(
     messages=[
       {
'role': 'user',
'content': '''
           I have two pets.
           A cat named Luna who is 5 years old and loves playing with yarn. She has grey fur.
           I also have a 2 year old black cat named Loki who loves tennis balls.
         '''
,
       }
     ],
     model='llama3.1',
     format=PetList.model_json_schema(),
   )
​
   pets = PetList.model_validate_json(response.message.content)
   print(pets)
  • 输出结果将是一个包含宠物信息的结构化列表:
   pets=[
     Pet(name='Luna', animal='cat', age=5, color='grey', favorite_toy='yarn'), 
     Pet(name='Loki', animal='cat', age=2, color='black', favorite_toy='tennis balls')
   ]

2. 图像描述示例:对于图像描述任务,我们可以定义如下复杂的模式来获取详细信息:

from ollama import chat
from pydantic import BaseModel
class Object(BaseModel):
     name: str
     confidence: float
     attributes: str 
class ImageDescription(BaseModel):
     summary: str
     objects: list[Object]
     scene: str
     colors: list[str]
     time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
     setting: Literal['Indoor', 'Outdoor', 'Unknown']
     text_content: str | None = None
   path = 'path/to/image.jpg'
   response = chat(
     model='llama3.2-vision',
     format=ImageDescription.model_json_schema(),  # 传递响应的模式
     messages=[
       {
'role': 'user',
'content': 'Analyze this image and describe what you see, including any objects, the scene, colors and any text you can detect.',
'images': [path],
       },
     ],
     options={'temperature': 0},  # 设置温度为 0 以获得更确定的输出
   )
   image_description = ImageDescription.model_validate_json(response.message.content)
   print(image_description)
  • 假设分析的图像是一张海滩上的棕榈树照片,输出可能如下:
summary='A palm tree on a sandy beach with blue water and sky.'
   objects=[
Object(name='tree', confidence=0.9, attributes='palm tree'), 
Object(name='beach', confidence=1.0, attributes='sand')
   ], 
   scene='beach', 
   colors=['blue', 'green', 'white'], 
   time_of_day='Afternoon'
   setting='Outdoor'
   text_content=None

三、使用技巧与注意事项

(一)模式定义工具选择

    1. Pydantic(Python)和 Zod(JavaScript)的优势

      • 在 Python 中使用 Pydantic,在 JavaScript 中使用 Zod 来定义模式是推荐的做法。这些工具提供了强大的类型验证和序列化功能,能够确保模式的准确性和有效性。例如,Pydantic 可以自动验证输入数据是否符合定义的模式,在数据不符合要求时抛出错误,避免了无效数据进入模型处理流程。

      • 它们还提供了方便的方法来生成 JSON 模式,如 Pydantic 的 model_json_schema() 方法和 Zod 的 zodToJsonSchema() 方法,使模式的定义和使用更加简洁高效。

    2. 手动定义模式的注意事项

      • 如果选择手动定义 JSON 模式,需要熟悉 JSON 模式的语法规则。确保模式的结构清晰、准确,属性类型定义正确,并且包含必要的约束条件,如 required 属性来指定必填字段。否则,可能导致模型输出不符合预期或出现错误。

(二)提示优化

    1. 明确要求返回 JSON 格式

      • 在向模型发送提示时,添加 “return as JSON” 等类似表述,有助于模型理解我们需要结构化的 JSON 输出。这可以引导模型按照指定的格式生成回答,提高输出的准确性。例如,在查询数据时,提示可以写成 “请提取以下文本中的关键信息并以 JSON 格式返回:[具体文本内容]”。

    2. 控制温度参数

      • 将温度参数设置为 0 可以使模型输出更具确定性。较低的温度会减少模型输出的随机性,使其更倾向于按照训练数据中的常见模式进行回答。在需要精确、一致的结构化输出的场景中,如数据提取和格式严格的文档生成,这一设置尤为重要。但需要注意的是,过低的温度可能会导致输出缺乏多样性,在一些需要创造性回答的场景中可能不太适用。

(三)常见问题与解决方法

    1. 输出格式不符合预期

      • 如果模型的输出格式与定义的 JSON 模式不匹配,首先检查模式定义是否正确,确保属性名称、类型和约束条件等都准确无误。同时,检查提示内容是否清晰明确,是否正确引导模型生成符合格式要求的输出。如果问题仍然存在,可以尝试调整模型参数,如温度、最大令牌数等,或者检查模型是否支持所需的结构化输出功能。

    2. 数据提取不准确

      • 在数据提取任务中,如果提取的信息不准确或不完整,可能是因为模型对文本或图像的理解不够准确。可以尝试提供更多的上下文信息,或者对数据进行预处理,使其更易于模型理解。此外,检查模式定义是否过于严格或过于宽松,适当调整模式以适应数据的特点。还可以考虑使用更强大的模型或对模型进行微调,以提高其数据提取能力。

    3. 性能问题

      • 当处理大量数据或复杂任务时,可能会遇到性能问题,如响应时间过长或内存占用过高。可以优化代码逻辑,减少不必要的计算和数据传输。例如,在批量处理数据时,可以采用异步处理方式提高效率。同时,根据实际情况调整模型的配置参数,如降低分辨率(对于图像相关任务)、减少模型层数等,以平衡性能和输出质量。如果性能问题仍然严重,可以考虑升级硬件设备或使用分布式计算技术来加速处理过程。

四、结构化输出对人工智能应用的影响

(一)提升应用的可靠性和稳定性

    1. 数据处理的准确性

      • 在各种人工智能应用中,如数据分析、智能决策等,结构化输出确保了数据的准确性和一致性。以企业数据分析为例,通过结构化输出,从不同数据源提取的数据能够以统一的格式进行整合和分析,避免了因数据格式不一致导致的分析错误,提高了决策的科学性。

      • 在医疗领域,对于病历数据的分析和诊断辅助系统,结构化输出保证了关键信息的准确提取和呈现,有助于医生做出更准确的诊断。

    2. 系统行为的可预测性

      • 由于模型的输出格式是固定的,应用系统可以根据预定义的模式准确地处理和响应模型的输出。这使得系统的行为更加可预测,降低了系统出错的风险。例如,在自动化流程控制系统中,模型的输出决定了下一步的操作,结构化输出确保了系统能够按照预期的流程稳定运行。

(二)拓展应用的创新空间

    1. 与其他技术的融合

      • 结构化输出为 Ollama 模型与其他技术的融合提供了更多可能性。例如,与数据库技术结合,可以将结构化数据直接存储到数据库中,方便数据的管理和查询。与可视化工具结合,可以将结构化数据快速转换为直观的图表和图形,为数据分析和展示提供更强大的支持。

      • 在物联网领域,结构化输出可以使传感器数据与模型输出更好地融合,实现智能设备的精准控制和优化管理。例如,智能家居系统可以根据模型对环境数据(如温度、湿度、光照等)的结构化分析结果,自动调整设备的运行状态。

    2. 新应用场景的开发

      • 基于结构化输出的特性,开发人员可以探索更多创新的应用场景。例如,在教育领域,开发智能辅导系统,根据学生的问题和回答,以结构化的方式提供针对性的反馈和建议,帮助学生更好地学习。在旅游规划领域,利用模型对旅游目的地信息的结构化输出,为游客提供个性化的行程规划和景点推荐。

(三)推动行业发展与标准化进程

    1. 行业应用的规范化

      • 在各个行业中,结构化输出有助于规范人工智能应用的开发和使用。例如,在金融行业,对于风险评估、投资决策等应用,统一的结构化输出格式可以使不同机构之间的模型结果具有可比性,促进行业的标准化和规范化发展。

      • 在电商行业,商品推荐、客户评价分析等应用的结构化输出可以提高数据的共享和交互效率,推动行业的协同发展。

    2. 数据共享与协作的促进

      • 由于结构化数据易于理解和处理,不同组织和系统之间的数据共享和协作变得更加容易。这有助于打破数据孤岛,实现数据的更大价值。例如,在医疗科研领域,不同医疗机构可以共享结构化的病历数据和研究成果,加速医学研究的进展。在政府治理领域,各部门之间可以通过结构化数据的共享和协作,提高公共服务的质量和效率。

Ollama 的结构化输出功能为人工智能应用带来了诸多优势和新的发展机遇。通过合理使用这一功能,并遵循相关的技巧和注意事项,开发者可以构建更强大、可靠和创新的应用程序。随着这一功能的不断推广和应用,相信它将在人工智能领域引发更多的创新和变革,推动行业朝着更加高效、智能的方向发展。让我们共同期待并积极探索结构化输出在未来人工智能应用中的无限可能。

科技脉搏,每日跳动。

与敖行客 Allthinker一起,创造属于开发者的多彩世界。

图片

- 智慧链接 思想协作 -

### 如何使用 Ollama 框架进行文本数据分析或处理 #### 安装与配置 为了利用 Ollama 进行文本分析,首先需要安装该框架及其依赖项。通常情况下,官方文档会提供详细的安装指南。 ```bash pip install ollama ``` 确保环境已正确设置之后,可以通过导入必要的模块开始编写代码[^1]。 #### 加载预训练模型 Ollama 支持加载多种预训练的语言模型来进行不同的 NLP 任务。对于特定的任务需求可以选择合适的模型版本: ```python from ollama import load_model, TextAnalyzer model = load_model('text_analysis') analyzer = TextAnalyzer(model) ``` 此处 `load_model` 函数用于加载指定名称的预训练模型实例;而 `TextAnalyzer` 类则封装了一系列针对文本分析的功能方法[^3]。 #### 文本清理与预处理 在实际应用之前,原始文本往往需要经过一定的清洗和转换操作才能达到最佳效果。常见的预处理步骤包括去除噪声字符、标准化格式以及分词等: ```python def preprocess(text): cleaned_text = text.lower() # 转换为小写 tokens = cleaned_text.split() # 简单分割单词 return ' '.join(tokens) sample_text = "This is an EXAMPLE of TEXT that needs preprocessing!" processed_text = preprocess(sample_text) print(processed_text) # 输出: this is an example of text that needs preprocessing ``` 此部分可以根据具体应用场景调整具体的实现逻辑[^2]。 #### 执行文本分析任务 完成上述准备工作后即可调用相应的方法执行各类文本分析工作,比如分类、聚类或是提取关键词特征向量等等: ```python result = analyzer.analyze(processed_text) for key, value in result.items(): print(f"{key}: {value}") ``` 这里假设 `analyze()` 方法返回的是一个字典对象,其中包含了不同维度上的分析结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值