本科生毕业设计(论文)开题报告
学生姓名 | 学号 | 年级 | ||||||
指导教师姓名 | 学院 | |||||||
论文题目 | 基于Django框架的线上订餐系统设计与实现 | |||||||
开始时间 | 完成时间 | 工作地点 | ||||||
选题来源 | ||||||||
选题依据:随着信息化时代的不断发展,人们对于饮食方面有了更多的选择和期望。而线上订餐系统能够很好地满足当代年轻人对于个性化订餐服务的需求,为用户提供更加便捷有效的餐饮服务。同时,在面临众多的餐饮选择时,用户常常会遇到选择困难以及信息过载等相关问题。为了解决这些问题,可以通过协同过滤等推荐算法,为用户推荐符合其兴趣的餐品,帮助用户做出选择。 研究意义: 1. 提升用户体验:通过个性化的推荐,系统能够更好地满足用户的口味和需求,提升用户的用餐体验,增强用户粘性。 2. 促进餐饮行业的发展:线上订餐系统可以帮助餐饮企业扩大市场,吸引到更多的顾客,从而推动整个行业的发展。 3. 提升社会资源利用率:通过线上订餐系统,人们可以足不出户就解决晚餐问题,减少在餐厅里等待的时间,提高社会的资源利用率。 线上订餐系统符合当前科技发展的趋势,能够很好地满足人们对于个性化服务的需求,对整个餐饮服务行业具有重要的意义。
在国内外,智能化、个性化的线上订餐系统一直都备受关注。有很多专家学者都在研究该领域的不同方面。 其中对推荐算法的创新一直都是研究的重点,例如张文涛先生在《混合推荐技术在餐饮行业的研究与应用》一文中对当前流行的推荐算法进行了深入的研究,并且总结了各个算法的特点。然后,根据当前餐饮行业数据结构特征和推荐需求,设计并实现了合适的推荐算法,构建了个性化的推荐系统。 而傅金京先生则是在《个性化推荐系统的精准推荐策略研究》一文中,对经典的协同过滤算法所存在的冷启动、用户评分数据不可信等问题进行分析。并在不改变经典算法的前提下,通过综合地运用各种算法来提升推荐的准确度,并提出了一种基于协同过滤的精准推荐策略(Accurate Recommendation Strategy Based on Collaborative Filtering,CFAR)。 在国外,线上订餐系统的研究和发展涵盖Uber Eats、Grubhub、DoorDash、Just Eat Takeaway.com以及Deliveroo等多个订餐网站。这些系统通过技术创新如实时追踪和个性化推荐,关注用户体验设计,提供方便的订餐服务。同时,它们在市场趋势方面注重多样性和全球运营,为用户提供丰富的餐馆选择和多种支付方式,展示了系统在功能性、用户友好性和市场竞争力方面的综合考虑。
本课题的主要研究目标是设计并实现一个基于Django框架的线上订餐系统,采用合适的推荐算法,为用户提供更智能、个性化的美食推荐服务,从而满足用户多元化的口味及偏好。 本课题的主要研究内容如下所示: 1.课题的背景与意义:实现智能化、个性化的订餐系统为用户提供更舒适的服务,充分研究当前的国内外现状并对现有系统的局限性进行改进。 2.理论基础和参考文献:学习并整理相关的知识和技术,为课题研究提供良好的技术支持。 3.系统需求设计:详细阐述和分析系统当前的功能需求,主要功能如下: 一、用户模块 (1). 用户注册:用户可以通过填写用户名、密码、邮箱等基本信息来注册账号。 (2). 用户登录:用户可以通过输入用户名和密码来登录系统。 (3). 个人信息:用户可以查看和修改自己的个人信息,如姓名、性别、出生日期、手机号等。 (4). 地址管理:用户可以添加、修改和删除自己的收货地址。 (5). 菜品搜索:用户可以通过关键词搜索菜品,查看菜品详细信息。 (6). 菜品分类浏览:用户可以按照菜品类型、口味等分类条件浏览菜品。 (7). 菜品收藏:用户可以将喜欢的菜品添加到收藏夹,方便下次查看。 (8). 购物车管理:用户可以查看购物车中的菜品,对数量、口味等进行修改。 (9). 订单管理:用户可以查看自己的订单状态,如订单号、下单时间、订单金额等。 (10). 评价与反馈:用户可以对购买的菜品进行评价,并给出建议和反馈。 (11). 推荐菜品收:用户可以接收到系统基于协同过滤算法推荐的菜品。 (12). 消息通知:用户可以接收到系统发送的订单通知、优惠活动通知等。 二、管理员模块 (1). 管理员登录:管理员可以通过输入用户名和密码来登录系统。 (2). 菜品管理:管理员可以添加、修改和删除菜品信息,包括菜品名称、价格、口味、描述等。 (3). 菜品分类管理:管理员可以添加、修改和删除菜品分类,如类型、口味等。 (4). 订单管理:管理员可以查看所有订单,对订单进行处理,如确认收货、退款等。 (5). 用户管理:管理员可以查看用户信息,对用户进行权限控制,如禁言、封号等。 (6). 推荐结果监控:管理员可以监控推荐结果的质量和效果,以便及时调整算法和策略。 (7). 优惠活动管理:管理员可以添加、修改和删除优惠活动,如满减、折扣等。 (8). 数据统计与分析:管理员可以查看系统数据,如订单量、营业额、用户活跃度等,并进行数据分析。 (9). 系统设置:管理员可以设置系统参数,如支付方式、配送范围等。 (10). 消息通知:管理员可以查看和发送消息通知,如订单通知、活动通知等。 (11). 推荐算法管理:管理员可以查看和调整协同过滤算法的参数,如相似度计算方法、推荐阈值等。 4.系统的设计与实现:详细描述系统的架构设计,包括前后端框架,数据库部分等等。其中本篇论文主要用到的技术如下: (1).后端服务架构:基于Django框架进行扩展开发,该框架是一个高效的Python Web框架,具有简洁、快速开发的特点。Django提供了强大的ORM(对象关系映射)系统,简化了与数据库的交互,同时具备轻量级和可扩展的特性。自动化的管理后台、表单处理、认证系统等内建功能,减少开发者的重复工作,使得项目搭建更加迅速。Django框架还支持插件式应用,能够方便地与其他技术(如各种数据库引擎、缓存系统等)集成,为构建稳健的后台服务提供了便利。 (2).MySQL数据库是一款广泛使用的开源关系型数据库管理系统(RDBMS)。它以其稳定性、可靠性和高性能而闻名。MySQL具有优秀的轻量级特性,允许快速构建稳健的数据库系统。其易于安装和配置的特点,使得用户能够快速部署数据库,并且具备自动化的功能,减少了许多繁琐的设置过程。MySQL提供了丰富的扩展功能和强大的插件体系,使其能够轻松与其他技术进行集成和兼容,从而满足不同应用场景的需求。其优化的查询引擎和高效的索引策略保证了数据的高速检索和处理,使得MySQL成为许多应用程序和网站的首选数据库系统。 (3).前端页面设计:前端开发采用基于Vue框架的高级JavaScript框架,借助HTML、CSS、以及JavaScript等技术,实现了动态而美观的用户界面。Vue框架以其轻量、灵活的特点脱颖而出,提供了响应式数据绑定、组件化开发等先进特性,使得前端开发更加高效。使用Vue开发者能够轻松构建复杂的单页面应用(SPA),并实现与后端服务的无缝通信,为用户提供流畅的交互体验。框架的组件化开发风格使代码更易维护和扩展,同时支持虚拟DOM技术,提高页面渲染效率。这使Vue成为一种理想的前端开发框架,能够有效地提升用户界面的设计水平,同时为开发者提供丰富的工具和生态系统。
本系统是基于Django开发的全栈应用,采用python开发项目的全部流程,开发软件为pycharm,系统的主要研究路线如下所示: 1.系统规划以及需求分析:在项目初期需要进行系统规划和需求分析,确定线上订餐系统所需的全部功能并进行合理的规划。 2.技术选型和环境搭建:基于Django的线上订餐系统的技术选型包括使用Django框架、选择数据库mysql、前端采用Vue.js作为前端框架,借助其组件化和响应式特性优化用户界面。整合用户认证系统和支付系统。环境搭建涵盖安装Python和pip、创建虚拟环境、安装Django、进行数据库迁移、创建Django应用等步骤。配置方面包括静态文件路径、数据库信息和URL路由。这样的搭建奠定了系统的基础,可在此基础上逐步扩展功能和提升性能。 3.后端开发:将采用功能强大的Django框架,以便于实现相应的功能。 Django框架有以下特点: (1).快速开发:Django遵循“约定优于配置”的原则,使得开发者能够专注于编写应用,而不是配置框架。 (2).安全性:Django具有内置的安全特性,可以帮助开发者避免常见的安全错误,如SQL注入、跨站脚本等。 (3).丰富的功能:Django自带了一个强大的ORM(对象关系映射)、Admin界面、认证系统等,减少了开发者从零开始构建这些功能的需要。 4.数据库技术:基于Django的线上订餐系统使用MySQL作为数据库技术,利用Django框架的ORM(对象关系映射)特性,实现了高度抽象的数据模型定义与数据库交互,提供了数据持久化的解决方案。MySQL作为后端数据库,支持可扩展性强、性能稳定、成熟的关系型数据库管理系统,配合Django的数据库迁移工具,能够方便地管理数据库模式变更,并借助Django提供的查询API,实现灵活、高效的数据检索与操作,为订餐系统提供稳定可靠的数据存储和管理。 5.前端技术:基于Django的线上订餐系统使用Vue.js作为前端框架,Vue.js作为一款渐进式JavaScript框架,具有轻量、灵活、易学易用的特点,使得前端开发更加高效。其组件化的设计允许开发者构建复杂的用户界面,并且通过数据绑定和响应式的特性,实现了快速的页面更新。结合Django框架提供的模板引擎,Vue.js能够有效地与后端集成,提供用户友好、动态响应的订餐系统前端体验。 6.推荐算法:基于Django的线上订餐系统将采用优化后的协同过滤算法,对经典的协同过滤算法所存在的冷启动、用户评分数据不可信等问题进行分析。并在不改变经典算法的前提下,通过综合地运用各种算法来提升推荐的准确度。 综上所述,基于Django的线上订餐系统将综合采用多种web开发技术,优化相关的推荐算法,实现个性化、智能化的订餐系统。 以下为对该项目的可行性分析: 1.技术可行性:采用高效、开源的Web框架,确保其能够完成项目所需的全部技术要求。 2.时间可行性:制定了详细的时间计划,确保项目能够在合理的时间范围内完成。 3.资源可行性:确保目前的设备可以完成项目的开发。
本课题的主要研究目标是设计并实现一个基于Django框架的线上订餐系统,采用优化后的协同过滤推荐算法,为用户提供更智能、个性化的美食推荐服务,从而满足用户多元化的口味及偏好。 预期成果将主要包含以下几个方面: 1.用户友好的界面: 通过清晰的布局、直观的菜单导航和简单的下单流程,确保用户能够快速浏览并选择所需的菜品,提高用户体验。使用直观的图标和符合用户习惯的交互设计,降低用户上手难度。 2.订单管理系统: 实现订单生成、支付、取消等核心功能,确保订单处理高效。提供用户实时订单状态的反馈,让用户清晰了解订单进展,提升用户满意度。同时,系统应该有适当的容错机制,处理异常情况,如支付失败或库存不足。 3.用户账户和认证系统: 提供简洁的注册和登录界面,用户能够快速完成身份验证。通过安全的认证手段,如加密存储密码,确保用户账户的安全。用户能够简单地管理基本的个人信息,例如修改密码或更改联系方式。 4.菜品推荐系统: 基于用户历史订单的简单协同过滤或基于内容的推荐算法,为用户提供个性化的菜品推荐,提高用户体验。系统应能动态调整推荐结果,反映用户的变化兴趣,增加用户对推荐的信任感。 5.多支付方式支持: 整合主流支付方式,包括信用卡、支付宝、微信支付等,确保用户能够选择最方便和安全的支付方式完成交易。提供简单而直观的支付界面,减少支付过程中的摩擦点。 6.后台管理系统: 提供管理员简单而有效的界面,方便对菜单、订单、用户信息等进行基本管理。管理员能够迅速查看订单状态、更新菜单、管理用户信息,保障系统高效运营。 7.性能和稳定性优化: 通过简单的代码优化和基本的数据库设计,提高系统性能和稳定性。确保系统在高峰时期依然能够快速响应用户请求,降低系统崩溃和错误的概率。
2023年12月25日-2024年1月13日: 完成开题报告,准备开题答辩。 2024年1月14日-2024年2月20日: 学习所需的知识,配置系统环境,完成初步框架搭建。 2024年2月21日-2024年3月31日: 完成系统的基本功能开发,并完成中期检查表 2024年4月1日-2024年4月30日: 测试相关的功能,改进系统,完成论文撰写。 2024年5月1日-2024年5月20日: 上传毕业论文,准备毕业论文答辩。 2024年5月21日-2024年5月30日: 论文定稿,完成毕业论文答辩。
【1】傅金京.个性化推荐系统的精准推荐策略研究[D].南京邮电大学,2021. 【2】余方鑫.基于协同过滤的混合推荐方法研究[D].广西大学,2022. 【3】张文涛.混合推荐技术在餐饮行业的研究与应用[D].山东科技大学,2018. 【4】林帅伽,俞婷,程芳颖.基于协同过滤的美食店铺推荐算法[J].电脑知识与技术,2022. 【5】宋丹丹.基于协同过滤的美食点餐推荐系统的设计与实现[D].武汉轻工大学,2018. 【6】郑歆.协同过滤算法在图书推荐系统中的应用[J].长江信息通信,2023. 【7】郭静菡.面向用户偏好的个性化音乐智能推荐系统[J].自动化技术与应用,2023. 【8】韩思瑞.高考志愿个性化推荐相关算法研究及系统设计[D].西安理工大学,2023. 【9】游真旭.基于信任机制的协同过滤推荐算法研究[D].江西理工大学,2019. 【10】乔雨.面向冷启动问题的推荐算法研究[D].南京邮电大学,2018. 【11】 Addressing the Item Cold-Start Problem by Attribute-Driven Active Learning[J]. Zhu Yu;Lin Jinghao;He Shibi;Wang Beidou;Guan Ziyu;Liu Haifeng;Cai Deng.IEEE Transactions on Knowledge and Data Engineering,2020. 【12】Collaborative filtering recommendation algorithm towards intelligent community[J]. Wei Fu;Jun Liu;Yirong Lai.Discrete & Continuous Dynamical Systems - S,2018. 【13】Enhancing recommendation accuracy of item-based collaborative filtering using Bhattacharyya coefficient and most similar item[J]. Pradeep Kumar Singh;Madhabendra Sinha;Suvrojit Das;Prasenjit Choudhury.Applied Intelligence,2020. 【14】DNNRec: A novel deep learning based hybrid recommender system[J]. Kiran R;;Pradeep Kumar;;Bharat Bhasker.Expert Systems With Applications,2020. 【15】Providing effective recommendations in discussion groups using a new hybrid recommender system based on implicit ratings and semantic similarity[J]. Masoumeh Riyahi;;Mohammad Karim Sohrabi.Electronic Commerce Research and Applications,2020. |