引言
在今天的文章中,我们将探讨一个经典的算法问题——将x减到0的最小操作。这个问题不仅涉及到数组的基本操作,还涉及到对操作次数的优化,是一个很好的练习,可以帮助我们提高在实际编程过程中遇到类似问题时的解决能力。
问题描述
给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。
如果可以将 x 恰好 减到 0 ,返回 最小操作数 ;否则,返回 -1 。
示例:
示例 1:
输入:nums = [1,1,4,2,3], x = 5
输出:2
解释:最佳解决方案是移除后两个元素,将 x 减到 0 。
示例 2:
输入:nums = [5,6,7,8,9], x = 4
输出:-1
示例 3:
输入:nums = [3,2,20,1,1,3], x = 10
输出:5
解释:最佳解决方案是移除后三个元素和前两个元素(总共 5 次操作),将 x 减到 0 。
解题思路
滑动窗口,如图所示
- 初始化:
- 计算nums的总和sum_nums。
- 设定目标值target = sum_nums - x。
- 初始化左指针left为0,右指针right为0,当前和subsum为0。
- 初始化结果res为-1(用于表示未找到符合条件的子数组)。
- 进窗口:扩展右边界
- 不断移动右指针right,将nums[right]加入到subsum中。
- 判断,出窗口:检查条件
- 如果subsum大于target,则移动左指针left,并从subsum中减去nums[left],直到subsum小于等于target。
- 如果subsum等于target,则更新res为当前子数组的长度(right - left + 1)的最大值。
- 遍历完成:
遍历完成后,如果res仍然是-1,则表示没有找到符合条件的子数组,返回-1;否则,返回len(nums) - res,即总长度减去最长子数组的长度。
代码实现
以下是使用C++实现的代码示例:
class Solution {
public:
int minOperations(vector<int>& nums, int x) {
int left = 0, right = 0; // 双指针,用于滑动窗口
int maxLength = 0; // 记录不需要移除的子数组的最大长度
int n = nums.size();
long long sum = 0; // 当前窗口内元素的和
long long sum_s = 0; // 数组nums中所有元素的和
// 计算数组nums的总和
for (int i = 0; i < n; i++) {
sum_s += nums[i];
}
// 计算目标值target,即需要从x中减去的数值量
int target = sum_s - x;
// 如果总和已经等于x,则不需要任何操作
if (sum_s == x) return 0;
// 如果总和小于x,则无法通过移除元素来使x减到0
if (sum_s < x) return -1;
// 遍历数组,使用双指针技巧来找到和为target的子数组
for (; right < n; right++) {
sum += nums[right]; // 将当前元素加入窗口
// 如果当前窗口的和大于target,则移动左指针来缩小窗口
while (sum > target && left <= right) {
sum -= nums[left]; // 从窗口中移除左指针指向的元素
left++; // 左指针右移
}
// 如果当前窗口的和正好等于target,则更新不需要移除的子数组的最大长度
if (sum == target) {
maxLength = max(maxLength, right - left + 1);
}
}
// 如果找到了和为target的子数组,则返回需要移除的元素数量(即操作数)
// 否则,返回-1
return maxLength == 0 ? -1 : n - maxLength;
}
};