实现基于 Python 的锂电池剩余寿命预测 基于LSTM、CNN、BiGRU、TCN、Transformer,-BiLSTM等预测

基于 Python 的锂电池剩余寿命预测

在这里插入图片描述
_合集:基于LSTM、CNN、BiGRU、TCN、Transformer、CNN-Transformer、Transformer-BiLSTM等系列预测模型,较多实验在这里插入图片描述

● 数据集:NASA锂离子电池寿命试验公开数据集
● 环境框架:python 3.9 pytorch 2.1 及其以上版本均可运行
● 提供实验:模型对比试验、窗口值对比实验、划分比例对比实验、电池组对比实验在这里插入图片描述
基于Python的锂电池剩余寿命预测合集,我们将使用PyTorch作为深度学习框架,并实现多种预测模型(LSTM、CNN、BiGRU、TCN、Transformer、CNN-Transformer、Transformer-BiLSTM)。该合集将涵盖数据加载、预处理、模型定义、训练、评估以及实验设置。

以下,代码及文字仅供参考

环境搭建

首先,确保你的开发环境已经安装了必要的库。你可以使用以下命令来安装所需的依赖:

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
pip install pandas numpy matplotlib scikit-learn tensorboard

项目结构

创建如下项目结构:

battery_lifetime_prediction/
├── data/                # 存放NASA电池数据集
│   ├── B0005.mat        # 电池B0005的数据
│   ├── B0006.mat        # 电池B0006的数据
│   ├── B0007.mat        # 电池B0007的数据
│   └── B0018.mat        # 电池B0018的数据
├── main.py              # 主程序入口
├── models/              # 不同模型的实现
│   ├── lstm.py          # LSTM模型
│   ├── cnn.py           # CNN模型
│   ├── bigru.py         # BiGRU模型
│   ├── tcn.py           # TCN模型
│   ├── transformer.py    # Transformer模型
│   ├── cnn_transformer.py # CNN-Transformer模型
│   └── transformer_bilstm.py # Transformer-BiLSTM模型
├── utils/               # 辅助函数
│   ├── data_loader.py   # 数据加载与预处理
│   ├── trainer.py       # 训练和评估工具
│   └── metrics.py       # 模型评估指标计算
└── experiments/         # 实验脚本
    ├── model_comparison.py # 模型对比实验
    ├── window_size_experiment.py # 窗口值对比实验
    ├── split_ratio_experiment.py # 划分比例对比实验
    └── battery_group_experiment.py # 电池组对比实验

数据加载与预处理 (utils/data_loader.py)

import os
import pandas as pd
import numpy as np
import scipy.io as sio
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset, DataLoader

class BatteryDataset(Dataset):
    def __init__(self, file_paths, seq_length=30):
        self.seq_length = seq_length
        self.scaler = MinMaxScaler()
        self.data = []
        for path in file_paths:
            mat_data = sio.loadmat(path)
            capacity = mat_data['cycle_life']['capacity'][0][0].flatten()
            normalized_capacity = self.scaler.fit_transform(capacity.reshape(-1, 1)).flatten()
            self.data.extend(self.create_sequences(normalized_capacity))
    
    def create_sequences(self, capacity):
        sequences = []
        for i in range(len(capacity) - self.seq_length):
            sequences.append((capacity[i:i+self.seq_length], capacity[i+self.seq_length]))
        return sequences
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        sequence, target = self.data[idx]
        return torch.tensor(sequence, dtype=torch.float32), torch.tensor(target, dtype=torch.float32)

def get_dataloaders(data_dir='data', batch_size=32, seq_length=30, test_split=0.2):
    file_paths = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.mat')]
    dataset = BatteryDataset(file_paths, seq_length)
    train_size = int((1 - test_split) * len(dataset))
    train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, len(dataset) - train_size])
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    return train_loader, test_loader

LSTM模型 (models/lstm.py)

import torch
import torch.nn as nn

class LSTMModel(nn.Module):
    def __init__(self, input_size=1, hidden_size=200, num_layers=2, output_size=1):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])
        return out

模型训练与评估工具 (utils/trainer.py)

import torch
from tqdm import tqdm
from .metrics import calculate_metrics

class Trainer:
    def __init__(self, model, optimizer, criterion, device='cpu'):
        self.model = model.to(device)
        self.optimizer = optimizer
        self.criterion = criterion
        self.device = device
    
    def train(self, train_loader, epoch):
        self.model.train()
        running_loss = 0.0
        for inputs, targets in tqdm(train_loader, desc=f'Training Epoch {epoch}'):
            inputs, targets = inputs.unsqueeze(-1).to(self.device), targets.to(self.device)
            self.optimizer.zero_grad()
            outputs = self.model(inputs)
            loss = self.criterion(outputs.squeeze(), targets)
            loss.backward()
            self.optimizer.step()
            running_loss += loss.item()
        return running_loss / len(train_loader)
    
    def evaluate(self, test_loader):
        self.model.eval()
        predictions, actuals = [], []
        with torch.no_grad():
            for inputs, targets in tqdm(test_loader, desc='Evaluating'):
                inputs, targets = inputs.unsqueeze(-1).to(self.device), targets.to(self.device)
                outputs = self.model(inputs)
                predictions.append(outputs.cpu().numpy())
                actuals.append(targets.cpu().numpy())
        predictions = np.concatenate(predictions)
        actuals = np.concatenate(actuals)
        metrics = calculate_metrics(predictions, actuals)
        return metrics

模型评估指标 (utils/metrics.py)

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

def calculate_metrics(predictions, actuals):
    mse = mean_squared_error(actuals, predictions)
    mae = mean_absolute_error(actuals, predictions)
    r2 = r2_score(actuals, predictions)
    rmse = np.sqrt(mse)
    return {'MSE': mse, 'MAE': mae, 'R2': r2, 'RMSE': rmse}

模型对比实验 (experiments/model_comparison.py)

import torch
from models.lstm import LSTMModel
from models.cnn import CNNModel
from models.bigru import BiGRUModel
from models.tcn import TCNModel
from models.transformer import TransformerModel
from models.cnn_transformer import CNNTransformerModel
from models.transformer_bilstm import TransformerBiLSTMModel
from utils.trainer import Trainer
from utils.data_loader import get_dataloaders

def compare_models(models, epochs=100, lr=0.001):
    results = {}
    train_loader, test_loader = get_dataloaders()
    for name, ModelClass in models.items():
        print(f'Training {name}...')
        model = ModelClass()
        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
        criterion = nn.MSELoss()
        trainer = Trainer(model, optimizer, criterion)
        
        for epoch in range(epochs):
            train_loss = trainer.train(train_loader, epoch)
            print(f'Epoch [{epoch+1}/{epochs}], Loss: {train_loss:.4f}')
        
        metrics = trainer.evaluate(test_loader)
        results[name] = metrics
        print(f'{name} Evaluation Metrics:', metrics)
    
    return results

if __name__ == '__main__':
    models = {
        'LSTM': LSTMModel,
        'CNN': CNNModel,
        'BiGRU': BiGRUModel,
        'TCN': TCNModel,
        'Transformer': TransformerModel,
        'CNN-Transformer': CNNTransformerModel,
        'Transformer-BiLSTM': TransformerBiLSTMModel
    }
    results = compare_models(models)
    print('All Models Comparison Results:', results)

其他实验脚本

另外呀,同学呢-_可以根据需要编写其他实验脚本,如窗口值对比实验、划分比例对比实验和电池组对比实验。这些实验可以调整get_dataloaders函数中的参数或在compare_models中添加不同的实验逻辑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值