如何训练自己收集标注的数据集 使用深度学习框架Yolov8训练电动车头盔检测数据集 建立基于深度学习的Yolov8电动车头盔检测系统 识别检测识别骑电动的人,戴头盔 未佩戴头盔
@[以下文字及代码仅供参考]
电动车头盔检测数据集,一共三类,骑电动的人,戴头盔 未佩戴头盔。
手工拍摄收集及标注,三城市交通场景,拍摄角度也大多和摄像头位置一致。共4000张
1
1. 数据集制作
-
收集与标注:首先确保你的4000张图片已经按照要求进行了分类(骑电动的人、戴头盔、未佩戴头盔),并且每张图像都被正确地标注。可以使用像LabelImg这样的工具来手动标注图像。
-
组织数据集:将数据集分为训练集和测试集。通常的划分比例是80%用于训练,20%用于测试。确保每个类别在训练集和测试集中都有足够的表示。
2. 代码实现
数据读取与划分
import os
from sklearn.model_selection import train_test_split
# 假设所有图像文件路径存储在一个列表中
image_files = [os.path.join('path_to_images', x) for x in os.listdir('path_to_images') if x.endswith('.jpg')]
labels = ['label1', 'label2', ...] # 根据实际情况替换
train_images, test_images = train_test_split(image_files, test_size=0.2, random_state=42)
模型训练
使用YOLOv5作为示例:
# 安装依赖
!git clone https://github.com/ultralytics/yolov5
!cd yolov5 & pip install -r requirements.txt
# 准备YOLO配置文件和数据集
# 需要在yolov5/data目录下创建一个自定义的yaml文件,定义训练和验证集的路径,以及类别信息
# 开始训练
!python train.py --img 640 --batch 16 --epochs 50 --data path_to_your_data.yaml --weights yolov5s.pt
应用模型、绘制ROC曲线、精度评价
应用模型进行预测,并使用sklearn等库绘制ROC曲线和计算准确度等指标:
from sklearn.metrics import roc_curve, auc, accuracy_score
# 假设predictions是模型对测试集的预测结果,true_labels是真实标签
fpr, tpr, _ = roc_curve(true_labels, predictions)
roc_auc = auc(fpr, tpr)
print(f'Accuracy: {
accuracy_score(true_labels, predictions)}')
print(f'ROC AUC: {
roc_auc}')
使用YOLOv8训练你的电动车头盔检测数据集(包括三类:骑电动的人、戴头盔、未佩戴头盔),并且你的标注文件是以XML格式存储的,你需要完成几个步骤来准备数据并进行模型训练。以下是详细的流程:
1. 数据准备
转换标注格式
YOLO系列模型通常要求标注文件为特定格式(例如YOLO格式),而你现有的是XML格式。首先需要将XML格式转换为YOLO所需的格式。
- XML格式通常是Pascal VOC格式,每个对象的边界框信息以
<object>
标签的形式存在。 - YOLO格式要求每行代表一个对象,格式为:
class_index x_center y_center width height
,所有数值归一化到0-1之间,基于图像的宽度和高度。
同学可编写Python脚本来自动完成这个转换过程。例子:
import os
import xml.etree.ElementTree as ET
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
# 假设你的xml文件在一个目录中
xml_dir = 'path_to_xml_files'
output_dir = 'path_to_output_txt_files'
for xml_file in os.listdir(xml_dir):
if not xml_file.endswith('.xml'):
continue
tree = ET.parse(os.path.join(xml_dir, xml_file))
root = tree.getroot()
size = root.find('size')
w = int(size.find('width'