使用深度学习框架Yolov8训练电动车头盔检测数据集 建立深度学习的Yolov8电动车头盔检测系统 识别骑电动人,戴头盔 未佩戴头盔

如何训练自己收集标注的数据集 使用深度学习框架Yolov8训练电动车头盔检测数据集 建立基于深度学习的Yolov8电动车头盔检测系统 识别检测识别骑电动的人,戴头盔 未佩戴头盔
@[以下文字及代码仅供参考]

电动车头盔检测数据集,一共三类,骑电动的人,戴头盔 未佩戴头盔。
在这里插入图片描述

手工拍摄收集及标注,三城市交通场景,拍摄角度也大多和摄像头位置一致。共4000张在这里插入图片描述
1
在这里插入图片描述

1. 数据集制作

  • 收集与标注:首先确保你的4000张图片已经按照要求进行了分类(骑电动的人、戴头盔、未佩戴头盔),并且每张图像都被正确地标注。可以使用像LabelImg这样的工具来手动标注图像。

  • 组织数据集:将数据集分为训练集和测试集。通常的划分比例是80%用于训练,20%用于测试。确保每个类别在训练集和测试集中都有足够的表示。

2. 代码实现

数据读取与划分
import os
from sklearn.model_selection import train_test_split

# 假设所有图像文件路径存储在一个列表中
image_files = [os.path.join('path_to_images', x) for x in os.listdir('path_to_images') if x.endswith('.jpg')]
labels = ['label1', 'label2', ...]  # 根据实际情况替换

train_images, test_images = train_test_split(image_files, test_size=0.2, random_state=42)
模型训练

使用YOLOv5作为示例:

# 安装依赖
!git clone https://github.com/ultralytics/yolov5
!cd yolov5 & pip install -r requirements.txt

# 准备YOLO配置文件和数据集
# 需要在yolov5/data目录下创建一个自定义的yaml文件,定义训练和验证集的路径,以及类别信息

# 开始训练
!python train.py --img 640 --batch 16 --epochs 50 --data path_to_your_data.yaml --weights yolov5s.pt
应用模型、绘制ROC曲线、精度评价

应用模型进行预测,并使用sklearn等库绘制ROC曲线和计算准确度等指标:

from sklearn.metrics import roc_curve, auc, accuracy_score

# 假设predictions是模型对测试集的预测结果,true_labels是真实标签
fpr, tpr, _ = roc_curve(true_labels, predictions)
roc_auc = auc(fpr, tpr)

print(f'Accuracy: {
     accuracy_score(true_labels, predictions)}')
print(f'ROC AUC: {
     roc_auc}')

使用YOLOv8训练你的电动车头盔检测数据集(包括三类:骑电动的人、戴头盔、未佩戴头盔),并且你的标注文件是以XML格式存储的,你需要完成几个步骤来准备数据并进行模型训练。以下是详细的流程:

1. 数据准备

转换标注格式

YOLO系列模型通常要求标注文件为特定格式(例如YOLO格式),而你现有的是XML格式。首先需要将XML格式转换为YOLO所需的格式。

  • XML格式通常是Pascal VOC格式,每个对象的边界框信息以<object>标签的形式存在。
  • YOLO格式要求每行代表一个对象,格式为:class_index x_center y_center width height,所有数值归一化到0-1之间,基于图像的宽度和高度。

同学可编写Python脚本来自动完成这个转换过程。例子:

import os
import xml.etree.ElementTree as ET

def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

# 假设你的xml文件在一个目录中
xml_dir = 'path_to_xml_files'
output_dir = 'path_to_output_txt_files'

for xml_file in os.listdir(xml_dir):
    if not xml_file.endswith('.xml'):
        continue
    tree = ET.parse(os.path.join(xml_dir, xml_file))
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值