深度学习目标检测中_船舰船只尾迹数据集的训练 使用YOLOv8目标检测模型进行船只j船舶检测,识别船舶船只尾迹的检测

如何训练并识别用于舰船目标检测以及反演船只速度的任务,我们可以构建一个解决方案来处理这些任务。
@[以下文章及代码仅供参考]

在这里插入图片描述

船舰尾迹数据集
12000张图片
船只在水面行驶,带有尾迹的图像数据集
深度学习目标检测yolov8训练尾迹做舰船目标检测,反演船只速度在这里插入图片描述

如何训练并识别用于舰船目标检测以及反演船只速度的任务,我们可以构建一个解决方案来处理这些任务。

以下是一个基本框架,包括数据准备、模型选择与训练、目标检测和速度反演的步骤。
在这里插入图片描述

数据准备

首先,确保数据集已经准备好,并且每张图片都标注了船只的位置(边界框)以及可能的速度信息。如果没有现成的数据集,你可能需要自行标注。

假设你的数据集结构如下:

ship_wake_dataset/
├── images/
│   ├── img1.jpg
│   ├── img2.jpg
│   └── ...
└── labels/
    ├── img1.txt  # 标注文件,包含边界框坐标和速度信息
    ├── img2.txt
    └── ...

每个标注文件的内容格式示例(YOLO格式):

0 0.5 0.5 0.3 0.4 12  # 类别ID, 中心点x, 中心点y, 宽度, 高度, 速度

模型选择与训练

为了实现这个任务,可以使用YOLOv8等目标检测模型进行船只检测,然后根据尾迹特征反演出船只的速度。

安装依赖库
pip install ultralytics opencv-python-headless
创建配置文件

创建一个配置文件 data_ship_wake.yaml 来描述数据集路径和类别信息:

train: ./ship_wake_dataset/images/train/
val: ./ship_wake_dataset/images/val/
test: ./ship_wake_dataset/images/test/

nc: 1  # 只有一个类别:船只
names: ['ship']
训练模型

编写脚本开始训练过程:

from ultralytics import YOLO

def main_train():
    model = YOLO('yolov8n.yaml')  # 或者直接加载预训练权重,如 'yolov8n.pt'
    
    results = model.train(
        data='./data_ship_wake.yaml',
        epochs=100,  # 根据需要调整
        imgsz=640,
        batch=16,
        project='./runs/detect',
        name='ship_wake_detection',
        optimizer='SGD',
        device='0',  # 使用GPU编号
        save=True,
        cache=True,
    )

if __name__ == '__main__':
    main_train()

目标检测与速度反演

训练完成后,我们可以利用训练好的模型对新图片进行预测,并尝试从尾迹中反演船只的速度。

推理脚本
import cv2
from PIL import Image
from ultralytics import YOLO

model = YOLO('./runs/detect/ship_wake_detection/weights/best.pt')

def detect_and_estimate_speed(image_path):
    results = model.predict(source=image_path)
    img = cv2.imread(image_path)
    for result in results:
        boxes = result.boxes.numpy()
        for box in boxes:
            r = box.xyxy
            x1, y1, x2, y2 = int(r[0]), int(r[1]), int(r[2]), int(r[3])
            label = result.names[int(box.cls)]
            confidence = box.conf
            if confidence > 0.5:  # 设置置信度阈值
                cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)  # 绘制矩形框
                speed = box.speed  # 假设速度信息可以从模型输出中获得
                cv2.putText(img, f'{label} {confidence:.2f} Speed: {speed}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    return img

# 示例调用
result_image = detect_and_estimate_speed('your_test_image.jpg')  # 确保测试图像路径正确
Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)).show()  # 使用PIL显示图像

备注:上述代码中的 box.speed 是一个假设计划,YOLOv8默认不会直接输出速度信息。要实现速度反演,你需要基于尾迹模式开发额外的算法或使用机器学习方法来估计速度。这通常涉及到图像处理技术(例如,计算尾迹长度和方向)和物理模型(例如,基于流体力学的模型)的结合。

以上仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值