unet/DeepLabV3+模型训练道路车辆行人目标分割检测数据集 识别道路目标分割检测数据集json 道路车辆行人公交车自行车路标等

使用unet/DeepLabV3+对汽车道路分割检测数据集 道路分割 9000张 json coco 道路语义分割数据集 道路分割数据集 道路语义分割数据集 语义分割检测数据集 26类9000张


也可以用作目标检测 yolo算法

以下文字及代码仅供参考。学习。

在这里插入图片描述

目标类别:
person:行人
auto_rickshaw:三轮车
three_wheeler:三轮车
motorbike:摩托车
road:道路
road_divider:道路分隔线
pole:杆
bicycle:自行车
car:汽车
truck:卡车
bus:公交车
construction_vehicle:施工车辆
priority_vehicle:优先车辆
cart_vehicle:手推车
building:建筑物
vegetation:植被
road_sign:路标
wall:墙
sky:天空
over_bridge:高架桥
sidewalk:人行道
garbage_bin:垃圾桶
animal:动物
billboard:广告牌
traffic_light:交通信号灯
wheelchair:轮椅
在这里插入图片描述

针对你提供的汽车道路分割检测数据集,这是一个多类别语义分割任务,涉及26个不同的类别。为了高效地处理这种复杂的分割任务,选择一个强大的模型架构是关键。基于当前最先进的技术,我推荐使用 DeepLabV3+ 或者 U-Net++ 这样的模型,它们在语义分割任务中表现优异。此外,也可以考虑使用更高效的轻量级模型如 HRNet 或者 Fast-SCNN 如果部署环境对计算资源有限制。在这里插入图片描述

使用 Segmentation Models for PyTorch (smp) 库中的 DeepLabV3+ 模型进行训练的步骤示例:
在这里插入图片描述

1. 安装必要的依赖

首先确保安装了所有必要的库:

pip install torch torchvision scikit-learn segmentation-models-pytorch albumentations opencv-python

在这里插入图片描述

2. 数据准备与加载

数据是以 COCO 格式标注的 JSON 文件形式存在,需要将这些标注转换为适合模型输入的形式(比如像素级别的标签图像)。使用 pycocotools 来解析 COCO 标注文件,并将其转换成分割模型所需的格式。
在这里插入图片描述

作为参考的
例子来展示如何使用 pycocotoolsalbumentations 加载和增强数据:

import os
from torch.utils.data import Dataset, DataLoader
import cv2
import numpy as np
from pycocotools.coco import COCO
from albumentations import Compose, Normalize, ToTensorV2

class RoadSegmentationDataset(Dataset):
    def __init__(self, image_dir, annotation_file, transform=None):
        self.image_dir = image_dir
        self.coco = COCO(annotation_file)
        self.ids = list(sorted(self.coco.imgs.keys()))
        self.transform = transform
    
    def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        ann_ids = coco.getAnnIds(imgIds=img_id)
        anns = coco.loadAnns(ann_ids)

        path = coco.loadImgs(img_id)[0]['file_name']
        img = cv2.imread(os.path.join(self.image_dir, path), cv2.IMREAD_COLOR)
        mask = np.zeros((img.shape[0], img.shape[1]))
        for ann in anns:
            mask[coco.annToMask(ann) == 1] = ann['category_id']

        if self.transform is not None:
            augmented = self.transform(image=img, mask=mask)
            img = augmented['image']
            mask = augmented['mask']

        return img, mask.long()
    
    def __len__(self):
        return len(self.ids)

transform = Compose([
    Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2(),
])

dataset = RoadSegmentationDataset(image_dir='path/to/images', annotation_file='path/to/annotations.json', transform=transform)
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)

3. 模型定义

接下来定义并初始化模型:

import segmentation_models_pytorch as smp

ENCODER = 'resnet50'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['person', 'auto_rickshaw', ... , 'wheelchair']  # 列出所有类别
ACTIVATION = 'softmax2d'  # could be None for logits or 'softmax2d' for multiclass segmentation

# 创建模型
model = smp.DeepLabV3Plus(
    encoder_name=ENCODER,
    encoder_weights=ENCODER_WEIGHTS,
    classes=len(CLASSES),
    activation=ACTIVATION,
)

# 使用GPU加速
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(DEVICE)

4. 训练模型

定义损失函数、优化器等,并开始训练:

loss = smp.losses.DiceLoss(mode='multiclass')
optimizer = torch.optim.Adam([ 
    dict(params=model.parameters(), lr=0.0001),
])

# 假设已有dataloaders变量包含train_loader和val_loader
for epoch in range(epochs):
    model.train()
    for images, masks in train_loader:
        images, masks = images.to(DEVICE), masks.to(DEVICE)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss_value = loss(outputs, masks)
        loss_value.backward()
        optimizer.step()
    
    # 在验证集上评估性能...

以上文字及代码仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值