一、 Anaconda的下载与安装
- 下载anaconda安装包
1.1 到anaconda官网进行下载
a. 进入下载页面 Anaconda Download,输入邮箱账号并提交;
b. 打开邮箱会发现一封’Anaconda Distribution Download‘的邮件,
点击里面的’Download Now‘按钮,从而跳转到安装包下载页面,
选择自己电脑系统对应的系统版本安装包进行下载,如
“Windows
Python 3.12
64-Bit Graphical Installer (912.3M)”;
1.2 到其他镜像站下载:
清华园镜像 https://mirrors.tuna.tsinghua.edu.cn/
中科大USTC镜像源 https://mirrors.ustc.edu.cn/
注: 关于版本的选择,看自己的需求以及电脑系统的版本,比如说win7安装的anaconda版本不得高于2021.05,否则会报错Failed to extract packages(python3.9开始就不再支持win7,而2021.05以上版本搭载的都是python3.9+)
- 下载完毕之后运行安装包,
点击’next>‘,再点击’I Agree‘;
- 请根据你的实际需求和权限情况进行选择安装方式,
“install for just me (recommended)” 意为 “仅为我安装(推荐)”;
“All Users (requires admin privileges)” 意为 “为所有用户安装(需要管理员权限)”。
如果你只是自己使用电脑且不想麻烦地获取管理员权限,可以选择 “仅为我安装”;如果你需要为多个用户安装软件或者希望在系统层面更广泛地安装,并且有管理员权限,那么可以选择 “为所有用户安装”。
- “destination folder”的中文意思是“目标文件夹”,用于指定安装文件或其他数据要存储的位置,可以点击’Browse…'自定义选择安装路径;
- 点击’Install’进行安装;
“Create shortcuts (supported packages only).”
(仅为受支持的包创建 快捷方式 )
“Add Anaconda3 to my PATH environment variable”
“NOT recommended. This can lead to conflicts with other applications. Instead, use the Command Prompt and Powershell menus added to the Windows Start Menu.”
(不建议将 Anaconda3 添加到我的 PATH 环境变量中。这可能会导致与其他应用程序冲突。相反,可以使用添加到 Windows 开始菜单中的命令提示符和 PowerShell 菜单。)
“Register Anaconda3 as my default Python 3.12 Recommended. Allows other programs, such as VSCode, PyCharm, etc. to automatically detect Anaconda3 as the primary Python 3.12 on the system.”
(推荐将 Anaconda3 注册为我的默认 Python 3.12。这允许其他程序(如 VSCode、PyCharm 等)自动将 Anaconda3 检测为系统上的主要 Python 3.12。)
“Clear the package cache upon completion Recommended. Recovers some disk space without harming functionality.”
(推荐在安装完成后清除包缓存。这可以回收一些磁盘空间而不会损害功能。)
如果没有勾选“Add Anaconda3 to my PATH environment variable”(将Anaconda3添加到我的PATH环境变量)这一选项,将会对后续的使用产生以下影响:
- 会导致你无法直接在命令行(如CMD、PowerShell或终端)中输入conda或python等命令来调用Anaconda中的程序。相反,你需要通过Anaconda Navigator的图形界面来管理环境和包,或者使用Anaconda Prompt。
- 为了使用conda命令或运行Python脚本,你需要通过开始菜单找到并打开Anaconda Prompt(在Windows上)或使用Anaconda Navigator。
- 不将Anaconda添加到PATH环境变量中,可以避免与系统中已存在的其他Python版本或工具产生冲突。特别是当系统默认Python版本与Anaconda中的Python版本不同时,这种做法有助于保持环境的清洁和隔离。
- 手动配置环境变量。如果你希望在命令行中直接使用conda和Python命令,但又不想在安装时添加Anaconda到PATH环境变量,你可以在安装完成后手动配置环境变量。这种做法可能会带来上述提到的冲突风险。
- 执行到’_anaconda_depends-2024.06-py312_mkl_2.conda’时会花费不少时间(耐心等待即可);
在任务管理器可以看到位于安装路径的’_conda.exe’程序正在繁忙的运行中;
- 安装完成
问题整理
安装或卸载Anaconda后Windows自带的cmd窗口会闪退:
- 按Win + R,输入regedit打开注册表编辑器,地址栏输入:
计算机\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Command Processor·
修改界面里AutoRun的值为空或者删除AutoRun,按确定即可。
- 若界面里就没有AutoRun:以管理员权限打开PowerShell,然后输入
C:\Windows\System32\reg.exe DELETE "HKCU\Software\Microsoft\Command Processor" /v AutoRun /f
之后就可以正常打开cmd了。
找不到Anaconda Navigator快捷方式或可执行文件
打开powershell,输入
anaconda-navigator
即可打开Anaconda Navigator。
- 在命令提示符或 PowerShell 中,可以通过以下方式启动 Anaconda Prompt:直接输入 “conda prompt”(不包括引号)并回车,或者输入 “anaconda prompt”(不包括引号)并回车。
- 如果要启动 Jupyter Notebook,可以输入 “jupyter notebook” 并回车。
手动配置环境变量
在Windows中手动配置环境变量
Windows环境变量的配置通常通过“系统属性”对话框完成。
操作方式有以下3种:
通过“设置”应用:
- 按Win + I打开设置。
- 转到“系统”>“关于”。
- 点击“高级系统设置”链接。
- 在“系统属性”窗口中,点击“环境变量”按钮。
- 在“环境变量”窗口中,可以选择编辑用户变量或系统变量。
- 找到Path变量,选择它并点击“编辑”。
- 点击“新建”并添加你的新路径(如C:\Your\New\Path)。
- 点击“确定”保存更改。
通过“控制面板”(对于旧版Windows):
- 打开“控制面板”。
- 选择“系统和安全”>“系统”。
- 点击左侧的“高级系统设置”。
- 后续步骤与上述通过“设置”应用的方法相同。
通过cmd指令直接打开:
- Win+R打开运行窗口
- 输入sysdm.cpl并回车
- 执行后续步骤
注:在配置环境变量时,请确保不要删除或修改原有的路径,以避免意外的程序错误或无法找到某些命令。同时,对于系统级别的环境变量更改,请务必谨慎操作,并确保你有足够的权限来执行这些更改。
添加路径:
将以下路径(将D:\ProgramData\Anaconda3\替换为自己anaconda的实际安装路径)添加到 ‘用户变量’ -> ‘Path’ 中
D:\ProgramData\Anaconda3
D:\ProgramData\Anaconda3\Scripts
(以下为可选:
D:\ProgramData\Anaconda3\Library\mingw-w64\bin
D:\ProgramData\Anaconda3\Library\usr\bin
D:\ProgramData\Anaconda3\Library\bin
以上配置完成之后,打开命令提示符或 PowerShell,执行指令:conda info
即为完美安装成功。
Anaconda是什么?
简单来说,Anaconda是Python的包管理器和环境管理器。
但我已经安装了Python,并附带pip,为什么还需要Anaconda呢?
原因有以下几点:
- Anaconda附带了一大批常用数据科学包,它附带了conda、Python和 150多个科学包及其依赖项。
因此你可以用Anaconda立即开始处理数据。
- 管理包。
Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的。在数据分析中,你会用到很多第三方的包,而conda(包管理器)可以很好的帮助你在计算机上安装和管理这些包,包括安装、卸载和更新包。
- 管理环境。
为什么需要管理环境呢?比如你在A项目中用到了Python2,而新的项目要求使用Python3,而同时安装两个Python版本可能会造成许多混乱和错误。这时候conda就可以帮助你为不同的项目建立不同的运行环境。还有很多项目使用的包版本不同,比如不同的pandas版本,不可能同时安装两个pandas版本。你要做的应该是在项目对应的环境中创建对应的pandas版本。这时候conda就可以帮你做到。
conda指令
conda 是一个开源的包、依赖和环境管理系统,它广泛用于Python社区,但也支持其他语言。conda 使得安装、运行和更新包及其依赖变得简单,并且可以创建、保存、加载和切换环境,这些环境是相互隔离的,使得不同项目之间的依赖管理变得容易。
以下是一些常用的 conda 命令:
环境管理
- 创建新环境:
=>创建一个名为 myenv 的新环境,并安装Python 3.8conda create --name myenv python=3.8
- 激活环境:
=>在Windows上:
=>在Linux和macOS上:activate myenv
=>从Conda 4.6开始,推荐使用新的命令(在Windows、Linux和macOS上相同):source activate myenv
在激活环境后,Conda会修改PATH环境变量,以确保在该环境中运行的命令(如python)指向环境中的相应版本。conda activate myenv
- 退出激活环境:
=>退出当前激活的环境,恢复PATH环境变量到之前的状态conda deactivate
- 列出所有环境:
或conda env list
conda info --envs
- 复制环境:
=>创建一个名为 myclone 的新环境,它是 myenv 的精确副本conda create --name myclone --clone myenv
- 删除环境:
或conda remove --name myenv --all
conda env remove --name myenv
包管理
- 安装包:
=>在当前激活的环境中安装 numpy 包conda install numpy
- 列出已安装的包:
conda list
- 更新包:
=>更新 numpy 包到最新版本
=>更新conda:conda update numpy
conda update conda
- 卸载包:
=>从当前环境中卸载 numpy 包conda remove numpy
搜索包
- 搜索包:
=>搜索与 numpy 相关的包conda search numpy
导出和导入环境
- 导出环境:
=>将当前激活的环境导出到 environment.yml 文件中conda env export > environment.yml
- 从文件创建环境:
=>根据 environment.yml 文件中的描述创建新环境conda env create -f environment.yml
这些是 conda 的一些基础命令,conda 提供了更多功能,你可以通过 conda --help 或 conda --help 查看特定命令的帮助信息。
设置Anaconda镜像
查看当前 conda 配置的镜像源:
conda config --show channels
使用conda install 包名 安装需要的Python非常方便,但是官方的服务器在国外,因此下载速度很慢,国内清华大学提供了Anaconda的仓库镜像,我们只需要配置Anaconda的配置文件,添加清华的镜像源,然后将其设置为第一搜索渠道即可cmd命令行下分别执行以下命令:
(参考 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/
conda config --set show_channel_urls yes
配置完后可以测试一下,安装第三方包明显相对提速。
如果你之前设置了默认的国外镜像源,并且想要移除它,可以使用命令:
conda config --remove-key
但是,通常我们不直接移除默认源,而是将其移动到通道列表的后面,以便在需要时仍然可以使用。不过,如果你确实想要移除它,可以参照以下命令(注意替换为你要移除的源的 URL):
conda config --remove-key channels https://repo.anaconda.com/pkgs/main/
二、Pycharm的下载和安装
Pycharm官网下载
Pycharm中文指南
搜索pycharm中文指南
Pycharm社区版和专业版的区别
- 功能集成
PyCharm Community Edition 专为“纯 Python”开发设计,没有其他的功能集成。
PyCharm Professional Edition 的功能丰富,默认捆绑 WebStorm 和 DataGrip 功能,不仅为前端技术和数据库提供一流支持,还包括对 Python Web 框架、数据科学、远程开发和 Python 分析器的支持。 - 授权方式
PyCharm的社区版提供给开发者免费使用的。
PyCharm的专业版是需要付费购买该软件的激活码才可以进行使用。
Pycharm Community Edition的下载与安装
-
下载Pycharm安装包;
到官网下载pycharm(根据自己的配置选择,这里的是win版):Download PyCharm
-
下载完成后运行安装包;
-
选择安装位置;
-
安装选项;
-
执行安装;
-
安装完毕(3min左右),需重启电脑。
三、Anaconda和Pycharm的环境搭建及集成
- 新建项目;
- 配置;
选择conda的安装路径,等待加载完成,点击应用;
创建新项目;
- 查看集成的效果;
四、除pycharm之外的python数据分析工具
.ipynb
.ipynb 是 Jupyter Notebook 的文件格式扩展名。
Jupyter Notebook 是一种交互式的编程环境,非常适合数据分析、科学计算和教学等场景。.ipynb
文件包含了一个或多个代码单元格、Markdown 文本单元格、输出结果以及元数据等信息。
以下是.ipynb
文件的一些特点:
优点:
- 交互性:可以逐块运行代码,方便查看中间结果和进行调试。可以随时修改代码并重新运行,快速验证想法。
- 文档与代码结合:可以在代码中插入 Markdown 文本单元格,用于记录分析过程、解释代码、添加注释等,使得代码和文档紧密结合。
- 可视化支持:可以方便地进行数据可视化,直接在 notebook 中显示图表和图像。
- 易于分享:可以将
.ipynb
文件导出为 HTML、PDF 等格式,方便与他人分享分析结果和代码。
使用场景:
- 数据分析:数据科学家可以使用 Jupyter Notebook 进行数据探索、清洗、分析和可视化。
- 机器学习:进行模型训练、评估和调优,记录实验过程和结果。
- 教学:教师可以用它来创建教学材料,让学生在交互式环境中学习编程和数据分析。
- 研究报告:科研人员可以将研究过程和结果以 notebook 的形式呈现,方便同行评审和交流。
以下是一些可以运行.ipynb
文件的工具:
Jupyter Notebook: 这是最常见的运行 .ipynb 文件的工具。可以通过在命令行中输入 jupyter notebook 来启动服务器,然后在浏览器中打开 notebook 进行编辑和运行。
Visual Studio Code: 安装 Python 扩展后,可以在 VS Code 中打开和运行 .ipynb 文件。它提供了代码编辑、调试等功能,同时也支持与 Jupyter 服务器的交互。
Jupyter Notebook
Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。
简而言之,Jupyter Notebook是以网页的形式打开,可以在网页页面中「直接」编写代码和运行代码,代码的运行结果也会直接在代码块下显示。若代码需要文档说明,可以直接在页面中以markdown的格式编写、展示。
安装
- 通过Anaconda安装
一般情况下,jupyter notebook是伴随Anaconda安装好的。若是没有,则运行Anaconda Navigator,在主界面找到jupyter notebook并点击 install 按钮进行安装。 - 通过pip安装
pip 是 Python 的包管理工具,用于安装和管理 Python 包。使用 pip 命令来安装 Jupyter Notebook。
把pip升级到最新版本:
在命令提示符或终端窗口中输入以下命令:pip install --upgrade pip
pip install jupyter
运行
在Terminal (Mac / Linux)或Command Prompt(Windows)中运行以下命令就可打开Jupyter Notebook:
jupyter notebook
如果你想自定义端口号来启动Jupyter Notebook,可以在终端中输入以下命令:
jupyter notebook --port 1234
其中的‘1234’大家可以自行修改为自己想要设置的端口号。
若只是想启动Jupyter Notebook的服务器但不打算立刻进入到主页面,则:
jupyter notebook --no-browser
通常运行jupyter notebook之后进入的主页面内容是取决于运行这个命令的路径的,如:
打开的http://localhost:8888/tree?
页面的根目录实则是命令行提示符中运行jupyter notebook
时的路径。
添加内核
以下使用的环境python版本为 3.12.5
- 进入虚拟环境:
conda activate 虚拟环境名称
- 查看是否安装了ipykernel:
python -m ipykernel --version
- 若无,则为当前虚拟环境安装ipykernel:
conda install ipykernel
- 添加内核:
python -m ipykernel install --user --name 虚拟环境名称 --display-name "内核名称"
如:python -m ipykernel install --user -name my_env_name --display-name “my kernel”
- 查看当前环境的所有内核:
jupyter kernelspec list
- 删除指定内核:
jupyter kernelspec remove 内核名称
添加内核:
运行jupyter notebook,选择内核:
添加jupyter扩展库
第一步,先安装jupyter扩展管理器:
-
安装扩展:
- 假设要安装一个名为
jupyter_contrib_nbextensions
的扩展,执行以下命令:conda install -c conda-forge jupyter_contrib_nbextensions
pip install jupyter_contrib_nbextensions
- 安装完成后,可能还需要运行以下命令来确保扩展生效:
jupyter contrib nbextension install --user
- 假设要安装一个名为
-
卸载扩展:
-
查找扩展安装的位置:
conda list | grep jupyter_contrib_nbextensions
这将显示扩展的安装路径信息。
-
尝试使用 Conda 卸载:
conda uninstall jupyter_contrib_nbextensions
如果卸载过程中出现问题,可以查看错误信息并尝试手动删除相关文件和配置。但在进行手动删除操作时要小心,以免影响其他 Jupyter 的功能。
-
-
启用扩展
- 启动 Jupyter Notebook,在网页界面中点击 “Nbextensions” 选项卡。
- 勾选你想要启用的扩展,如 “Table of Contents”(目录)、“Codefolding”(代码折叠)等。
-
常用的 Jupyter 扩展
- Table of Contents (2):为 notebook 添加目录,方便导航。
- Codefolding:允许折叠代码块。
- Variable Inspector:显示当前 notebook 中定义的变量及其值。
- Collapsible Headings:可以折叠标题部分,使 notebook 更整洁。
- ExecuteTime: 显示代码单元格的执行时间。
- Notify: 当代码执行完成时向浏览器推送通知。
jupyter界面
Jupyter Notebook编辑器界面
重启内核:
重启内核会清除所有当前定义的变量和导入的模块,并且停止任何正在运行的代码。在进行一些可能导致环境混乱的操作后,或者想要重新开始运行代码时,重启内核是很有用的。
Restart the kernel and run all cells”(重启内核并运行所有单元格):
这个操作会先重启内核,清除所有变量和状态,然后从第一个单元格开始依次运行所有的单元格代码。这在需要重新开始执行整个 notebook 并确保没有残留状态影响结果时非常有用。
Cell
- Jupyter有三种cell类型:
- Code(编辑代码,运行后显示代码运行结果)
- Markdown(编写Markdown文档,运行后输出Markdown格式的文档)
- Raw NBConvert(普通文本,运行不会输出结果)
- Jupyter支持两种模式:
- 编辑模式(Enter)
- 命令模式下回车Enter或鼠标代码块进入编辑模式
- 可以操作代码或文本,进行剪切 / 复制 / 粘贴等操作
- 命令模式(Esc)
- 按Esc退出编辑,进入命令模式或单击代码块外部
- 可以操作cell单元本身,进行剪切 / 复制 / 粘贴/移动等操作
- 编辑模式(Enter)
Code用于写代码,三类提示符及含义如下:
快捷键操作cell
- 两种模式都可使用的快捷键
- Shift+Enter,执行本单元代码,并跳转到下一单元
- Ctrl+Enter,执行本单元代码,留在本单元
- 命令模式:按Esc或鼠标单击代码块外部进入
- Y:cell切换到Code模式
- M:cell切换到Markdown模式
- A:在当前cell的上面添加cell
- B:在当前cell的下面添加cell
- 双击D:删除当前cell
- Z:回退
- Ctrl+Shift+减号:分隔cell,在光标处
- L:为当前cell加上行号
- 编辑模式:按Enter或鼠标单击代码块内部进入
- Ctrl+鼠标单击(Mac:CMD+鼠标单击):多光标操作
- Ctrl+Z(Mac:CMD+Z):回退
- Ctrl+Y:重做
- Tab键:代码补全
- Ctrl(Mac:CMD+/):注释多行代码
VScode
- 安装Jupyter扩展;
- 打开一个.ipynb文件,并且在页面右上角配置内核;
- .ipynb文件已可以跑通,完成!