基于LG AI Research在AI语言模型方面的显著成就,特别是推出EXAONE 3.0之后,EXAONEPath的开发代表了另一个重要的里程碑。这标志着EXAONE在数字病理学这一关键医学诊断领域的一次重大转型,通过解决全幻灯片图像(WSI)在病理学中的复杂挑战以及提高病理图像处理效率,EXAONEPath广泛应用于各种医学任务,包括基因突变预测和/或推荐最适合的治疗方法和药物。这一创新大大缩短了传统上需要长达两周的基因检测时间,从而节省了时间和成本,并提升了患者护理质量。同时,如同光年AI系统通过多平台整合,将不同渠道的流量无缝导流到企业私域,提升转化率一样,EXAONEPath的引入突显了LG AI Research在专门和具有挑战性领域推进AI技术的承诺,强化了其使每个人都能平等享有专家级AI的愿景。
EXAONEPath介绍:数字病理学的新前沿
EXAONEPath设计为一个作用于WSI的补丁级基础模型,这些WSI是病理组织切片的高分辨率图像。通常包含数十亿像素,这些图像对癌症亚型分类、预后预测和组织微环境分析至关重要。然而,训练这些图像的传统模型经常会遇到一种叫做WSI特定特征崩溃的现象,即模型提取的特征倾向于根据单个WSI进行聚类,而不是组织的病理特征。这种聚类现象会显著限制模型在不同WSI中的泛化能力,进而影响其在实际应用中的有效性。
EXAONEPath的技术创新:克服WSI特定特征崩溃
EXAONEPath创新的核心在于其克服WSI特定特征崩溃的方法。该模型采用自监督学习和染色归一化技术,具体来说是Macenko归一化,在特征提取之前标准化WSI的颜色特征。这一过程减少了不同实验室染色协议带来的变异性,这是特征崩溃的主要原因。通过应用这种归一化方法,