
LLM大模型落地实战指南
文章平均质量分 91
深入探讨如何将LLM大模型应用于实际场景中。我们将涵盖LLM大模型的基本原理和架构,以及如何训练和调优模型。我们还将介绍如何处理和准备数据集,以及如何使用预训练模型进行特定任务的微调和迁移学习。专栏中还将包括一些实际案例和最佳实践,帮助您更好地理解和应用LLM大模型。
AI天才研究院
中国程序员光剑,AI天才研究院和光剑读书创始人兼CEO。
展开
-
万字详解:基于 AI 推理大模型 LLM Multi - Agent 系统架构实现电商运营数据自动化分析报表生成
基于AI推理大模型LLM的Multi - Agent系统架构主要包括以下几个部分:用户接口层、任务分配层、多个功能Agent层、数据存储与管理层以及LLM推理引擎。用户通过用户接口层提出电商运营数据分析报表的需求,任务分配层将任务分解并分配给相应的功能Agent,功能Agent在LLM推理引擎的协助下从数据存储与管理层获取数据进行处理,最后生成报表返回给用户。基于AI推理大模型LLM的Multi - Agent系统架构为电商运营数据自动化分析报表生成提供了一种强大而灵活的解决方案。原创 2025-03-20 20:56:49 · 115 阅读 · 0 评论 -
Spring AI Alibaba 快速入门开发实战
该指南通过整合Spring Boot 3.x、Spring AI Alibaba及阿里云AI服务,提供了从环境搭建到智能应用部署的全链路实战方案。开发者可根据实际需求扩展图像生成、数据分析等AI能力。原创 2025-03-20 16:50:55 · 56 阅读 · 0 评论 -
中国 AI Agent 行业研究:智能体落地千行百业,引领智能化革命的新引擎
LLM给AI Agent底层提供了一个突破性技术方案:LLM带来了深度学习新范 式,思维链和强大的自然语言理解能力有望让Agent 具备强大的学习能力和 迁移能力,从而让创建广泛应用且实用的Agent成为可能 LLM的框架优势:过去等强化学习基于深度学习框架可让Agent学到技能, 但Agent的泛化性较差,往往用于非常窄的特定领域,例如用在游戏或低维 层面的控制或计划,标志性应用是围棋领域的AlphaGo。相较于嵌入模式、副驾驶模式,智能体模式的人机协同模式更为高效,或将成为未来人机协同的主要模式。原创 2025-02-14 10:44:07 · 253 阅读 · 0 评论 -
谷歌《AI Agent白皮书》,简单易懂的智能体认知架构
人类在处理杂乱无章的模式识别任务方面非常擅长。然而,他们往往会借助工具,例如书籍、Google 搜索或计算器,来补充已有知识,从而得出最终结论。同样,生成式 AI (Generative AI) 模型也可以通过训练学会使用工具,以获取实时信息或提供实际行动建议。比如,一个模型可以使用数据库检索工具来获取特定信息,例如客户的购买记录,从而生成个性化的购物推荐。又或者,模型可以根据用户的需求调用 API,完成发送邮件回复同事或代表用户进行金融交易等操作。原创 2025-01-12 13:41:27 · 338 阅读 · 1 评论 -
第 6 章:Prompt 提示词工程最佳实践与效果评估优化
Prompt工程是人工智能领域中一个新兴且重要的分支,它专注于设计和优化用于引导AI模型(特别是大型语言模型)生成所需输出的文本提示。Prompt工程是一种技术,通过精心设计输入提示来引导AI模型生成特定的输出。它包括创建、优化和评估这些提示的过程,以提高模型性能和输出质量。提示设计:创建清晰、具体的指令上下文提供:为模型提供必要的背景信息任务定义:明确指定所需完成的任务输出格式化:指定期望的输出格式文本摘要任务要求模型生成简洁而全面的内容概述。指定摘要的长度和风格。原创 2024-12-26 16:06:36 · 274 阅读 · 0 评论 -
传统计算机自动化系统、人类智能系统和AI Agent系统在自治和自主行动能力对比剖析
为了更好地理解和比较这三种系统,我们将开发一个模拟环境,在该环境中可以并行运行传统自动化系统、人类智能系统(通过模拟)和AI Agent系统。这个项目将命名为"TriSys比较模拟器"。原创 2024-12-22 16:16:07 · 57 阅读 · 0 评论 -
AI Agent 在工业自动化与预测性维护中的应用
开发一个基于AI的智能系统,通过分析设备运行数据,预测潜在故障,实现预防性维护,减少停机时间。原创 2024-12-22 16:03:20 · 170 阅读 · 0 评论 -
AI Agent在医疗诊断辅助中的应用
开发一个基于深度学习的智能系统,用于分析肺部CT图像,辅助医生进行肺部疾病(如肺炎、肺癌等)的早期诊断。开发一个基于AI的智能系统,通过分析大量病历数据,为医生提供个性化的治疗方案建议。原创 2024-12-22 15:51:58 · 206 阅读 · 0 评论 -
AI Agent 在金融风控与投资分析领域的应用
信用风险评估是金融机构最关键的业务之一。传统的信用评分模型往往依赖有限的数据源和静态规则,难以适应快速变化的金融环境。AI Agent通过分析大量结构化和非结构化数据,可以提供更准确、动态的信用风险评估。开发一个基于AI的智能反欺诈系统,用于实时检测和预防金融交易中的欺诈行为。原创 2024-12-22 15:45:25 · 341 阅读 · 0 评论 -
Qlib:微软开源的AI量化投资平台 极简入门快速上手教程:使用 Qlib 进行中芯国际股价回测和预测
Qlib是由微软开源的面向AI量化投资的工具包。它提供了构建量化投资模型所需的基础设施,旨在帮助研究者和从业人员更高效地进行量化研究和策略开发。原创 2024-12-22 04:08:35 · 829 阅读 · 0 评论 -
《基于LLM的AI Agent 分析中国未来30年经济增长和投资战略》AI Agent系统设计与开发与经济增长趋势分析AI Agent设计
"中国经济数据预处理平台"是一个综合性的数据处理工具,旨在为经济分析和预测提供高质量、标准化的数据集。该平台集成了多源数据采集、清洗、转换和整合功能,能够自动化处理大量经济时间序列数据,为后续的AI分析提供可靠的数据基础。"智能经济指标体系构建器"是一个创新性的分析工具,旨在帮助经济学家和政策制定者快速构建和优化经济指标体系。该工具结合了机器学习算法和经济学理论,能够自动化地从大量经济数据中筛选关键指标,构建复合指标,并动态调整指标权重。原创 2024-12-20 15:58:42 · 74 阅读 · 0 评论 -
LLM 大模型应用开发实践极简教程
1.1.1 AI Agent的定义AI Agent(人工智能代理)是一种能够感知环境、做出决策并采取行动以实现特定目标的智能系统。它是人工智能研究和应用的重要组成部分,代表了向更高级、更自主的AI系统发展的趋势。自主性:能够在没有直接人类干预的情况下独立运作。反应性:能够感知环境并及时做出响应。主动性:不仅被动反应,还能主动采取行动以实现目标。社交能力:能够与其他Agent或人类进行交互和协作。f : P* → A其中,P*表示所有可能的感知序列,A表示Agent可以采取的行动集合。原创 2024-12-08 02:36:34 · 191 阅读 · 0 评论 -
LLM-Based AI Agent 核心思想、发展历史、未来趋势【资料大全】
复旦大学NLP团队在其综述论文中提出,LLM-based Agent由大脑、感知和行动大脑: 由LLM组成,负责存储记忆和知识,以及信息处理、决策等功能感知模块: 负责获取环境信息,将多模态输入转换为可用提示行动模块: 执行决策,通过具身能力和工具使用与环境进行交互这一架构与人类智能具有显著的相似性,展现了AI Agent在模仿人类智能方面的进展。原创 2024-12-07 02:14:55 · 375 阅读 · 0 评论 -
【精选文章集锦】AI 场景导购助手评测集标注工具开发和自动化评测系统构建
随着人工智能技术的快速发展,AI场景导购助手已经成为电商平台提升用户体验和销售转化率的重要工具。为了评估AI导购助手的性能表现,需要构建一套完善的评测集标注工具和自动化评测系统。本文将详细探讨AI场景导购助手评测集标注工具的开发流程以及自动化评测系统的构建方法。AI场景导购助手评测涉及以下几个核心概念:下图展示了这些概念之间的关系:AI场景导购助手评测集标注工具标注数据自动化评测系统评测结果3. 核心算法原理 & 具体操作步骤3.1 算法原理概述AI场景导购助手通常基于深度学习算法,如Transfor原创 2024-09-20 11:28:49 · 266 阅读 · 0 评论 -
机器人进程自动化(RPA)与AI代理工作流的融合
随着数字化转型的加速,企业面临着日益复杂的业务流程,这些流程涉及大量的规则遵从、数据处理和决策制定。传统的人工操作在面对重复性高、规则性强的任务时,不仅效率低下,而且容易出错。为了解决这些问题,自动化的解决方案应运而生,其中Robotic Process Automation(RPA)与Artificial Intelligence Agents(AI代理)成为两种关键技术。融合RPA与AI代理的算法通常基于模型驱动的方法,包括但不限于强化学习、规则引擎、专家系统和深度学习技术。原创 2024-09-19 03:39:38 · 508 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解(使用 Golang 实现)【6】
在当今信息爆炸的时代,用户面临着海量的内容和选择。如何从中快速找到自己感兴趣的信息,成为了一个巨大的挑战。推荐系统应运而生,它通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容推荐,大大提高了用户体验和内容消费效率。Elasticsearch作为一个强大的分布式搜索和分析引擎,不仅在全文搜索领域表现出色,还可以用于构建高效的推荐引擎。本文将深入探讨如何基于Elasticsearch实现一个功能完善的推荐引擎,包括其原理、详细实现方案以及相关的源代码解析。Elasticsearch的基本概念和特性。原创 2024-09-09 01:25:29 · 1806 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【5】
在当今数字化时代,个性化推荐系统已成为各大互联网公司提升用户体验、增加用户粘性的重要工具。随着数据量的爆炸式增长和用户对实时性要求的提高,传统的推荐系统架构面临着巨大的挑战。Elasticsearch作为一个分布式、高性能的搜索和分析引擎,凭借其强大的全文检索能力和灵活的数据模型,为构建高效的推荐引擎提供了新的可能性。本文将深入探讨如何基于Elasticsearch构建一个全面而高效的推荐引擎,涵盖从理论基础到实际实现的各个方面。原创 2024-09-09 01:16:46 · 1742 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【4】
在当今信息爆炸的时代,用户面临着海量的内容和选择。如何从中快速找到自己感兴趣的信息,成为了一个巨大的挑战。推荐系统应运而生,它通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容推荐,大大提高了用户体验和内容消费效率。Elasticsearch作为一个强大的分布式搜索和分析引擎,不仅在全文搜索领域表现出色,还可以用于构建高效的推荐引擎。本文将深入探讨如何基于Elasticsearch实现一个功能完善的推荐引擎,包括其原理、详细实现方案以及相关的源代码解析。Elasticsearch的基本概念和特性。原创 2024-09-09 01:09:43 · 926 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【3】
在当今数字化时代,个性化推荐系统已成为众多在线平台不可或缺的组成部分。从电子商务到社交媒体,从新闻资讯到音视频流媒体,推荐引擎在提升用户体验、增加用户黏性和促进商业价值方面发挥着至关重要的作用。随着数据量的爆炸式增长和用户对实时、精准推荐需求的不断提高,传统的推荐系统架构面临着巨大的挑战。Elasticsearch作为一个分布式、RESTful风格的搜索和分析引擎,以其强大的全文搜索能力、灵活的数据模型和优秀的可扩展性而闻名。原创 2024-09-09 01:06:15 · 1267 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【2】
推荐引擎在现代互联网应用中扮演着至关重要的角色。无论是电商平台、社交媒体还是内容分发平台,推荐引擎都在帮助用户发现感兴趣的内容、商品或服务。Elasticsearch作为一个强大的分布式搜索引擎,因其高效的全文搜索和分析能力,成为实现推荐引擎的理想选择。推荐算法主要分为基于内容的推荐、协同过滤推荐和混合推荐。基于内容的推荐通过分析内容特征进行推荐,协同过滤推荐通过分析用户行为进行推荐,混合推荐则结合了两者的优点。本文详细介绍了基于Elasticsearch实现推荐引擎的原理、算法和实现方法。原创 2024-09-09 00:55:47 · 513 阅读 · 0 评论 -
【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解(Java实现)【1】
随着互联网和移动互联网的快速发展,信息过载问题日益严重。用户面对海量的信息,往往难以找到自己真正感兴趣的内容。推荐系统应运而生,旨在根据用户的历史行为、兴趣偏好等信息,为用户推荐其可能感兴趣的内容,从而解决信息过载问题,提升用户体验和平台效益。Elasticsearch 作为一个开源的分布式搜索和分析引擎,以其强大的搜索能力、高性能、可扩展性等特点,被广泛应用于各种场景,包括电商网站的商品搜索、社交平台的用户搜索、日志分析等等。同时,Elasticsearch 也为构建推荐系统提供了强大的支持。原创 2024-09-09 00:52:57 · 1435 阅读 · 2 评论 -
SimCLR原理与代码实例讲解
SimCLR原理与代码实例讲解1. 背景介绍1.1 问题的由来在深度学习时代,特征学习成为提升模型性能的关键。尤其是对于无标签数据,自动学习有意义的特征变得至关重要。自监督学习(Self-supervised Learning)作为一种有效原创 2024-08-24 02:02:10 · 515 阅读 · 0 评论 -
Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解
Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解关键词:SGD(随机梯度下降)最小化损失原创 2024-08-24 02:02:42 · 904 阅读 · 0 评论 -
Transformer大模型实战 字节对编码
Transformer大模型实战:字节对编码1. 背景介绍1.1 问题的由来随着大规模预训练模型的涌现,诸如BERT、GPT系列、以及通用地表级语言模型(LLMs),人们开始探索如何更有效地利用这些模型进行实际任务处理。字节对原创 2024-08-24 02:03:13 · 393 阅读 · 0 评论 -
Transformer原理与代码实例讲解
Transformer原理与代码实例讲解关键词:自注意力机制(Self-Attention)多头自注意力(Multi-Head Attention)多层感知机(MLP)编码器(Encoder)原创 2024-08-24 02:04:16 · 405 阅读 · 0 评论 -
Transformer大模型实战 Transformer 概览
Transformer大模型实战 Transformer 概览1. 背景介绍1.1 问题的由来在深度学习领域,尤其是自然语言处理(NLP)任务中,传统的方法如循环神经网络(RNN)和长短时记忆网络(LSTM)原创 2024-08-24 02:03:45 · 531 阅读 · 0 评论 -
ViTDet原理与代码实例讲解
1. 背景介绍1.1 问题的由来在计算机视觉领域,目标检测一直是一个重要的研究课题。传统的目标检测方法主要依赖于手工设计的特征和滑动窗口的方式进行目标检测,这种方法在实际应用中存在着诸多问题,例如计算复杂度高、检测效果差等。随着深度学习的发展,基于深度学习的目标检测方法逐渐取代了传统的目标检测方法,并原创 2024-08-24 02:04:48 · 518 阅读 · 0 评论 -
MapReduce 原理与代码实例讲解
MapReduce 原理与代码实例讲解关键词:分布式计算并行处理大数据处理数据集划分减少数据传输量提高计算效率1.原创 2024-08-24 01:57:26 · 541 阅读 · 0 评论 -
OCRNet原理与代码实例讲解
OCRNet原理与代码实例讲解1. 背景介绍1.1 问题的由来在数字化时代,文本信息的获取和处理方式发生了翻天覆地的变化。虽然电子文档和网络上的文本信息越来越多,但仍有大量纸质文档和图片中的文本信息需要被提取和处理。光学字符识别(Optic原创 2024-08-24 01:58:30 · 379 阅读 · 0 评论 -
Momentum优化器原理与代码实例讲解
Momentum优化器原理与代码实例讲解1. 背景介绍1.1 问题的由来在深度学习和机器学习领域,优化器是训练模型时不可或缺的一部分。优化器的主要任务是通过调整模型参数来最小化损失函数,从而提升模型的性能。对于神经网络模型而言,优原创 2024-08-24 01:57:58 · 380 阅读 · 0 评论 -
OneShot Learning原理与代码实例讲解
原型分类器:例如K近邻(KNN)方法,通过计算新样本与训练样本的距离来分类。元学习:通过在多个任务上学习,使得模型能够更快地适应新任务。深度学习基元:利用深度神经网络进行学习,如MetaNet、MAML等。本文详细阐述了One-shot learning的概念、原理、算法、数学模型、代码实例以及实际应用。通过理论分析和具体案例,展示了如何构建和应用One-shot学习模型。原创 2024-08-24 01:59:01 · 902 阅读 · 0 评论 -
Predictive Maintenance原理与代码实例讲解
Predictive Maintenance原理与代码实例讲解1. 背景介绍1.1 问题的由来工业设备和设施的维护是保障生产效率和安全性的关键环节。传统的预防性维护(Preventive Maintenanc原创 2024-08-24 01:59:33 · 571 阅读 · 0 评论 -
Pulsar Consumer原理与代码实例讲解
Pulsar Consumer原理与代码实例讲解1. 背景介绍1.1 问题的由来消息队列技术是现代分布式系统中不可或缺的一部分,它用于在不同组件之间传递信息。Apache Pulsar 是一个高度可扩展的消息平台,提供了持原创 2024-08-24 02:00:36 · 364 阅读 · 0 评论 -
Pulsar原理与代码实例讲解
Pulsar原理与代码实例讲解1. 背景介绍1.1 问题的由来在大数据时代,海量数据的实时处理和分析已成为各行各业的迫切需求。传统的批处理模式难以满足实时性要求,而基于事件驱动的流式处理则成为主流解决方案。Apache Pulsar作为新一原创 2024-08-24 02:00:04 · 344 阅读 · 0 评论 -
Python深度学习实践:神经网络在异常检测中的应用
Python深度学习实践:神经网络在异常检测中的应用作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming关键词:异常检测,神经网络,Python编程,深度学习,机器学习1. 背景介绍原创 2024-08-24 02:01:07 · 529 阅读 · 0 评论 -
Robotics 原理与代码实战案例讲解
Robotics 原理与代码实战案例讲解1. 背景介绍1.1 问题的由来随着科技的进步,机器人技术已经成为自动化、制造业、医疗、服务业等多个领域不可或缺的一部分。面对复杂的工作环境和任务需求,设计和实现能够自主感知、决策和行动的机原创 2024-08-24 02:01:39 · 1029 阅读 · 0 评论 -
巴拿赫空间引论:分隔性定理
巴拿赫空间引论:分隔性定理关键词:分隔性定理巴拿赫空间序列空间凸集最小化问题1. 背景介绍1.1 问原创 2024-08-24 01:13:36 · 458 阅读 · 0 评论 -
巴拿赫空间引论:赋范线性空间的基本特性
巴拿赫空间引论:赋范线性空间的基本特性关键词:巴拿赫空间赋范线性空间序列收敛性完备性线性映射1. 背景介绍原创 2024-08-24 01:14:07 · 328 阅读 · 0 评论 -
YOLOv3原理与代码实例讲解
1. 背景介绍1.1 问题的由来在计算机视觉领域,目标检测是一项基础且重要的任务。它的目标是在图像中找出并识别特定目标,如行人、车辆、动物等。传统的目标检测方法,如滑动窗口和区域提取,其速度慢且精度不高。因此,需要一种更快更准确的方法,而YOLOv3就是为此而生。原创 2024-08-24 02:05:26 · 353 阅读 · 0 评论 -
大语言模型的prompt学习原理与代码实例讲解
大语言模型的prompt学习原理与代码实例讲解1. 背景介绍1.1 问题的由来在大语言模型(Large Language Model, LLM)的应用场景中,如何有效地引导模型生成所需的输出是至关重要的。prompt(提示)原创 2024-08-24 01:18:20 · 370 阅读 · 0 评论