Fish Audio 发布 Fish Speech 1.4:强大的开源文本转语音模型,支持多语言、即时语音克隆和闪电般快速的性能

Fish Audio正式推出了其强大的文本到语音(TTS)模型的高级版本——Fish Speech 1.4。通过这次发布,Fish Audio旨在将尖端的语音技术普及化,使全球开发者、研究人员和企业都能更容易地访问。Fish Speech的最新版本极大地增强了其前身,通过扩大训练数据、增加对更多语言的支持,并提供更简化和灵活的用户体验。该版本现在完全开源,进一步强化了公司提供高性能语音技术开放访问的使命。

扩展的训练数据和语言支持

Fish Speech 1.4的最显著进展之一是其训练数据的显著增加。该模型已经在700,000小时的多语言音频数据上进行了训练,这是之前版本的200,000小时训练数据的巨大飞跃。这个扩展的数据集提升了模型处理各种声音、口音和语言的准确性和自然性。

Fish Speech 1.4还引入了对八种语言的支持,提升了其在全球应用中的多功能性。这些语言包括英语、中文、德语、日语、法语、西班牙语、韩语和阿拉伯语。模型在这些语言的能力体现在大规模的训练数据中:英语和中文各300,000小时,其他六种语言各20,000小时。这一庞大的数据集使模型能够在这些语言中提供高质量的文本到语音转换,满足不同地区广大受众的需求。

Fish Speech 1.4的关键特性

Fish Speech 1.4因其能够满足用户多样化需求的强大功能而脱颖而出。一个重要的亮点是其超低延迟的闪电般快速的TTS能力,使其适用于实时应用,如直播、游戏和交互式语音应答系统。这确保了用户体验到最小的延迟,保持流畅的互动和一致的性能。

除了速度之外,该模型现在还支持即时语音克隆,允许用户几乎瞬间复制特定的声音。这个功能在媒体制作、内容创作、客户服务和个性化通信中有着广泛的应用。Fish Speech 1.4通过在最少数据的情况下进行准确的语音复制,提供了一个可扩展且高效的语

### Fish Speech 声音克隆技术实现 Fish Speech 是由 Fish Audio 开发的一个开源文本语音 (TTS) 模型,其核心技术依赖于 VQ-GAN、Llama VITS 等先进的 AI 技术[^1]。这些技术共同作用使得该模型可以高效地将输入的文本化为自然流畅的人类语音。 #### 技术细节 - **VQ-GAN**: 这一生成对抗网络变体用于学习音频数据中的离散表示形式,从而帮助提高合成语音的质量多样性。 - **Llama**: LLaMA(Large Language Model Meta AI)提供强大的语言理解能力,有助于更精准地解析待化的文字内容,进而指导高质量的声音输出过程。 - **VITS**: Variational Inference with Tokenized Speech model 结合了自回归解码器与非自回归框架的优点,在保持高效率的同时提升了发音准确性及时序控制性能。 通过上述组件的有效集成,Fish Speech 能够模仿特定说话人的风格特征来执行个性化的声音克隆任务。 ### 使用方法 为了方便开发者快速上手,官方提供了详细的部署指南以及在线平台支持: #### 创建 Python 环境 建议使用 Conda 来管理项目所需的软件包版本。具体命令如下所示: ```bash conda create -n Fish-Speech python=3.8 -y && conda activate Fish-Speech ``` 此操作会建立名为 `Fish-Speech` 的新环境,并安装指定版本的 Python 解释器[^2]。 #### 获取教程资源 访问 OpenBayes 平台上的「公共教程」部分,寻找标题为《Fish Speech v1.4 声音克隆-文本语音工具 Demo》的教学文档[^3]。按照其中指引完成后续配置工作即可体验完整的功能特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值