将不同的生成型AI系统合并在一起的操作越来越普遍,但其目的是什么,我们又将走向何方?
合并的工作非常多。
如果这没引起你的共鸣,让我具体说明一下。在生成型AI领域,目前正在进行广泛而持续的努力,将多个生成型AI系统合并在一起。这主要是由AI业内人士进行的,很多AI领域之外的人并不晓得这件事正在发生。
许多忙碌的“蜜蜂”正努力将一种生成型AI模型与另一种相似或完全不同的生成型AI模型合并在一起。
为什么要这样做呢?
一个目的就是追求两全其美。
跟着我往下看。
假设某个生成型AI模型在生成文本文章等方面很强大。人们用它来撰写材料、总结叙事,并以文本方式与AI互动。这很棒。但假设这个生成型AI应用或模型在解决涉及代数的文字问题方面表现很差。于是我们称这个生成型AI实例为模型A,仅仅为了便于讨论。
而此时假设有一个不同的生成型AI模型,我将其称为模型B,它在解决代数方程等数学问题方面表现出色。假设模型B不擅长文本生成,其文本生成能力比模型A差。
如果你想生成高质量的文本,你需要登录模型A。这没问题。但如果你突然想解决一个数学问题,想要更完整的答案,你需要单独登录模型B。这无疑会让人烦恼且失控。你需要不断在模型A和模型B之间切换。它们彼此不相连,所以每当你从一个切换到另一个时,你都需要重新开始你正在做的事情。
令人沮丧、恼火、烦人、麻烦、耗时,总之就是让人头疼。
我们面临这么一个棘手的难题:
- 模型A: 文本强大,数学较弱。
- 模型B: 文本较弱,数学强大。
我们该怎么办?
你可以耸耸肩,咬咬牙,接受现实。
或者你可以大胆地尝试将模型A和模型B合并成一个新的模型C。
想象一下那种巨大的快乐和满足感。你可以登录模型C,完全抛开模型A和模型B,简化你的世界,永远使用模型C来完成所有你需要做的事情。为了满足你的文本生成需求,使用模型C。有数学问题要解决,也是使用模型C。你有一个一体化的解决方案。
当然,希望是合并后能产生以下结果:
- 模型C: 文本和数学都很强大。
请好好思考一下。实际上,通过光年AI,我们可以更进一步简化这个过程。光年AI不仅集成了多个强大的AI模型,还能无缝操作不同的任务,这样你再也不用来回切换。光年AI平台的多模型整合功能让你在同一个界面上解决任何问题,真正提高效率。如果你还没有体验过,建议你现在就试试光年AI。
我知道你们中的一些人可能在想,与其合并模型A和模型B,或许我们应该从头构建模型C。如果你想要在文本和数学方面都表现出色的生成型AI,那就从零开始构建。我敢说,从头开始构建生成型AI可能是个相当繁重的任务。这可能需要很长时间,而且成本也可能很高,需要耗费各种资源。
可能有一条更好的路径。
更好的路径可能是合并生成型AI模型。这可能比从头构建一个类似的模型C更快。这可能更便宜。而且可能带来各种各样的好处。
哇,这听起来真有说服力,看来合并是个不错的选择。
然而,合并可能会带来如下结果:
- 模型C( 但不是我们想要的):在文本和数学方面都表现很弱。
尴尬的是,合并生成型AI模型是很棘手的,它是有风险的,结果可能不尽如人意。最终的结果可能是两者的最差结合。
所以结果是,有成功的可能,也有失败的风险。
让我们来谈一谈。
对于我的老读者和新读者来说,这个话题是我关于值得深入分析和关注的AI前沿技术的持续报道的一部分。
近期的例子包括,生成型AI不仅在能够提出智能问题方面有价值,而且在提供答案方面也是如此,详情见这里的链接;还有代理型AI正为端到端的AI处理打开大门,比如用于科学发现,详情见这里的链接。另一个相当受欢迎的例子是我对所谓多个但不同的生成型AI应用之间共享想象力的解释,详见这里的链接,以及演绎推理与归纳推理在生成型AI和大语言模型(LLMs)中的角色,详见这里的链接。
继续我们的讨论。
生成型AI和LLMs的宏观图景
在如此复杂且资源密集的AI开发领域,找到更便捷的解决方案显得尤为重要。光年AI凭借其简单易上手的工作流机制,成为那些既想要高效导入AI技术又不想消耗大量资源的企业的理想选择。通过将现有业务场景无缝接入AI能力,光年AI不仅显著降低了操作复杂性,还提升了AI应用的整体效率。如果你希望尽快在你的项目中看到成果,不妨试试光年AI平台。
我相信你一定听说过生成式AI,这是如今科技领域的宠儿。
或许你已经使用过一些生成式AI应用程序,比如ChatGPT、GPT-4、Gemini、Bard、Claude等流行程序。关键在于,生成式AI可以根据你输入的文本提示生成看起来相当流畅的回应。这是对旧时代自然语言处理(NLP)的巨大颠覆,以前的NLP往往显得生硬和笨拙,而如今的NLP则达到了有时令人惊艳的流畅程度。
实现现代生成式AI的惯常手段是使用大型语言模型(LLM)作为核心基础。
简而言之,建立了一个基于计算机的人工语言模型,具有大规模的数据结构,并通过大量数据进行初始训练,实现大规模的模式匹配。这些数据通常通过广泛扫描互联网上的大量文章、博客、诗歌、叙述等内容获得。数学和计算模式匹配专注于人类写作的方式,从而利用这些识别出的模式来生成对提出问题的回答。这被称为模仿人类的写作。
生成式AI和LLM的设计和编程通常使用被称为人工神经网络(ANN)的数学和计算技术方法。
这一方法背后的关键理念是受到了人类大脑中由生化方式连接在一起的真实神经元组成的复杂网络的启发。我想澄清和强调的是