今日课堂总结

人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。 人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

运行思路:

1. 从一个随机初始化参数的模型开始,这个模型基本没有“智能”; 2. 获取一些数据样本(例如,音频片段以及对应的是或否标签); 3. 调整参数,使模型在这些样本中表现得更好; 4. 重复第(2)步和第(3)步,直到模型在任务中的表现令⼈满意。

学习的相关组件:

1.数据 拥有越多数据的时候,工作就越容易。更多的数据可以被用来训练出更强大的模型,从而减少对预先设想假设的依赖。仅仅拥有海量的数据是不够的,还需要正确的数据。

2.模型 任一调整参数后的程序被称为模型。 这些模型由神经⽹络错综复杂的交织在一起,包含层层数据转换,因此被称为深度学习。

3.目标函数 “学习”,是指自主提高模型完成某些任务的效能。 什么才算真正的提高呢?在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数。

4.目标函数 定义一个目标函数,并优化它到最小值——损失函数。 预测数值任务——平方误差:预测值与实际值之差的平方。 预测分类任务——最⼩化错误率:预测与实际情况不符的样本⽐例。 损失函数是根据模型参数定义的,并取决于数据集。在一个数据集上,我们可以通过最⼩化总损失来学习模型参数的最佳值。

5.优化算法 当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最⼩化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法——梯度下降(gradient descent) 在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。然后,它在可以减少损失的方向上优化参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值