用结构化方法为数据世界搭建骨架。
当面对杂乱无章、关系模糊的数据需求时,
我总会说:“先建一个数据模型吧!”
因为,没有数据模型,就像没有蓝图就盖房子,注定混乱和失败。
什么是 Data Modelling?
Data Modelling(数据建模)不是单纯画表格,也不是随便拉条线,
它是:
- 把现实世界的信息系统化、结构化地表达出来
- 明确数据对象、属性及它们之间的关系
- 架起业务和技术沟通的桥梁
一句话:用图表语言,把数据变得有逻辑、有层次、易理解。
我常用 Data Modelling 的应用场景
- 设计新的业务系统数据库(如CRM、ERP)
- 梳理现有系统的数据结构和痛点
- 作为需求分析和系统设计的必备前置
- 辅助数据治理、数据标准化
- 优化系统性能,减少冗余与冲突
我的 Data Modelling 流程
- 了解业务需求
- 深入了解业务流程、数据使用场景、关键数据要素
- 明确数据建模的目标(是为了运营、分析还是集成?)
- 识别实体与属性
- 实体(Entity):业务世界中需要被记录的对象(如客户、订单、产品)
- 属性(Attributes):实体的具体特征(如客户姓名、下单时间)
- 定义实体关系
- 实体与实体之间存在什么联系?(一对一、一对多、多对多)
- 业务规则如何影响数据关联?
- 选择建模层级
- 概念模型(Conceptual Model):高层次、业务视角,关注核心实体及关系
- 逻辑模型(Logical Model):增加字段、类型、关系细节,不依赖特定数据库
- 物理模型(Physical Model):最终映射到数据库,考虑索引、分区等技术实现
- 绘制 ER 图(Entity-Relationship Diagram)
- 用标准符号表示实体、属性、关系
- 保持清晰、直观,便于沟通和审阅
- 验证与优化
- 与业务部门、开发团队一起审阅
- 检查规范性(如范式化),确保数据一致性与完整性
一个真实案例
在为一家连锁零售商设计会员系统时,最初业务只是提出了简单的“客户管理”需求。
我带着团队逐步挖掘,通过数据建模厘清了:
- 一个会员(Customer)可以拥有多个会员卡(Membership Card)
- 会员卡可以在多个门店(Store)使用
- 每次消费(Transaction)要记录对应会员卡和门店信息
- 不同会员等级(Tier)又影响积分计算逻辑
最终,绘制出一张清晰的概念模型,
让所有人第一次真正理解了系统需要处理的数据结构。
开发顺利,测试顺利,上线也顺利!
Data Modelling 带给我的价值
- 将抽象业务需求转化为具体的数据设计
- 提前发现潜在问题,降低后期返工成本
- 提升数据一致性、完整性和可扩展性
- 搭建起业务与开发团队之间的理解桥梁
我的经验建议
- 不要急于下手建模,一定要先充分理解业务
- 坚持从概念到逻辑,再到物理逐步推进,不要跳步
- 名称要清晰、规范,字段、实体命名一目了然
- 用场景驱动模型,不要为了范式化而失去业务可用性
- 建模是协作过程,多听业务、多听开发的声音
- 持续迭代更新,随着业务发展调整模型,避免僵化
最后的共勉
在数据驱动一切的时代,
Data Modelling 是BA搭建信息世界的地基与骨架。
它让我们BA在面对复杂需求时,
依然能保持冷静、清晰、专业,
成为那个能驾驭混乱、搭建秩序的人。