MMMU学习资料汇总 - 全面评估多模态AI模型能力的基准测试

MMMU简介

MMMU (Massive Multi-discipline Multimodal Understanding and Reasoning) 是一个大规模多学科多模态理解和推理基准测试,旨在评估多模态AI模型在专家级任务上的表现。它涵盖了艺术与设计、商业、科学、医疗健康、人文社科、技术工程等6大核心学科,包含30个学科和183个子领域的11.5K多模态问题。

MMMU的主要特点包括:

  1. 全面性:涵盖大学水平的多学科知识
  2. 多样性:包含30种异构图像类型
  3. 复杂性:需要专业领域知识和深度推理能力
  4. 挑战性:当前最先进模型GPT-4V的准确率仅为56%

MMMU概览

相关资源

  1. MMMU官方网站

    • 包含项目概述、排行榜、最新动态等信息
  2. MMMU论文

    • 详细介绍了MMMU的设计理念和评估结果
  3. MMMU数据集

    • 在Hugging Face上可以下载和使用MMMU数据集
  4. MMMU GitHub仓库

    • 包含评估代码和使用说明
  5. EvalAI评估平台

    • 可以在此提交模型预测结果进行评估

使用指南

  1. 数据集结构:

    • 开发集:150个样本,用于少样本/上下文学习
    • 验证集:900个样本,用于调试模型和快速评估
    • 测试集:10,500个问题(答案未公开)
  2. 评估流程:

    • 在开发集上进行少样本学习
    • 使用验证集调试和优化模型
    • 在测试集上生成预测结果
    • 将预测结果提交到EvalAI平台进行评估
  3. 注意事项:

    • MMMU采用零样本设置,不允许在基准测试任务上进行微调
    • 评估关注模型的感知、知识和推理三个核心能力

MMMU示例

最新进展

  1. MMMU-Pro:MMMU的升级版,引入了更严格的评估方法
  2. 人类专家表现已添加到排行榜,为模型性能提供参考
  3. 持续更新排行榜,展示最新模型在MMMU上的表现

MMMU为多模态AI模型的评估提供了一个全面而富有挑战性的基准。研究人员和开发者可以利用MMMU来测试和改进模型的跨学科理解和推理能力,推动人工智能向着通用智能的方向发展。

文章链接:www.dongaigc.com/a/mmmu-learning-resources-multimodal-ai-benchmark

https://www.dongaigc.com/a/mmmu-learning-resources-multimodal-ai-benchmark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值