funcchain入门指南 - 构建pythonic认知系统的最佳方式

funcchain

funcchain简介

funcchain是一个用于构建认知系统的Python库,它以最pythonic的方式将大型语言模型(LLM)无缝集成到你的应用中。它利用pydantic模型作为输出模式,结合langchain作为后端,可以轻松地将LLM集成到你的应用中。funcchain使用OpenAI Functions或LlamaCpp语法(json-schema模式)来实现高效的结构化输出。

funcchain logo

主要特性

  • 🐍 pythonic风格
  • 🔀 轻松切换OpenAI或本地模型
  • 🔄 动态输出类型(pydantic模型或基本类型)
  • 👁️ 支持视觉LLM
  • 🧠 使用langchain_core作为后端
  • 📝 使用Jinja2进行提示词模板
  • 🏗️ 可靠的结构化输出
  • 🔁 自动重试解析
  • 🔧 支持LangSmith
  • 🔄 支持同步、异步、流式、并行、回退等多种方式
  • 📦 从Hugging Face自动下载GGUF模型
  • ✅ 所有函数都有类型提示,支持mypy
  • 🗣️ 聊天路由器组件
  • 🧩 可与LangChain LCEL组合使用
  • 🛠️ 简单的错误处理
  • 🚦 支持枚举和字面量
  • 📐 自定义解析类型

安装

使用pip安装funcchain:

pip install funcchain

快速入门

以下是一个简单的示例,展示了如何使用funcchain生成结构化输出:

from funcchain import chain
from pydantic import BaseModel

class Recipe(BaseModel):
    ingredients: list[str]
    instructions: list[str]
    duration: int

def generate_recipe(topic: str) -> Recipe:
    """
    Generate a recipe for a given topic.
    """
    return chain()

recipe = generate_recipe("christmas dinner")
print(recipe.ingredients)

学习资源

  1. 官方文档 - 详细介绍了funcchain的用法和概念

  2. GitHub仓库 - 包含源码、示例和贡献指南

  3. PyPI页面 - 查看最新版本和安装说明

  4. 示例文件夹 - 包含多个实际应用示例

  5. Discord社区 - 与其他开发者交流和获取帮助

进阶主题

  1. 复杂结构化输出
  2. 视觉模型支持
  3. 本地模型支持
  4. 自定义解析器
  5. 异步支持

贡献

如果你想为funcchain做出贡献,可以查看贡献指南。项目欢迎各种形式的贡献,包括报告问题、提出改进建议或提交代码。

GitHub Contributors

funcchain是一个强大而灵活的工具,可以帮助你轻松构建基于LLM的应用。通过本文提供的资源,你可以快速入门并掌握这个工具。祝你使用愉快!

文章链接:www.dongaigc.com/a/funcchain-guide-pythonic-systems

https://www.dongaigc.com/a/funcchain-guide-pythonic-systems

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值