FCH-TTS学习资料汇总 - 快速高质量并行语音合成模型

FCH-TTS

FCH-TTS学习资料汇总 - 快速高质量并行语音合成模型

FCH-TTS是一个快速、可控、高质量的非自回归文本到语音(TTS)合成模型,支持英语、中文、日语、韩语、俄语和藏语等多种语言。本文汇总了FCH-TTS的相关学习资料,帮助读者快速了解和使用该项目。

项目介绍

FCH-TTS是由GitHub用户atomicoo开发的开源TTS项目,其主要特点包括:

  • 采用并行非自回归架构,合成速度快
  • 支持多种语言:英语、中文、日语、韩语、俄语、藏语等
  • 合成音质高,接近自然语音
  • 提供预训练模型,易于使用
  • 支持自定义训练

项目地址: GitHub - atomicoo/FCH-TTS: A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

快速开始

  1. 克隆仓库:
 git clone https://github.com/atomicoo/ParallelTTS.git
  1. 安装依赖:
 conda create -n ParallelTTS python=3.7.9
 conda activate ParallelTTS
 pip install -r requirements.txt
  1. 语音合成:
 python synthesize.py \
   --checkpoint ./pretrained/ljspeech-parallel-epoch0100.pth \
   --melgan_checkpoint ./pretrained/ljspeech-melgan-epoch3200.pth \
   --input_texts ./samples/english/synthesize.txt \
   --outputs_dir ./outputs/

模型训练

FCH-TTS的训练分为以下几个步骤:

  1. 准备数据集
  2. 训练对齐模型
  3. 提取持续时间
  4. 训练合成模型

详细的训练步骤可参考项目README。

相关资源

支持的数据集

FCH-TTS支持多个公开数据集,包括:

参考资料

FCH-TTS借鉴了多个开源项目,包括:

文章链接:www.dongaigc.com/a/fch-tts-study-materials-summary

https://www.dongaigc.com/a/fch-tts-study-materials-summary

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值