Mathematics-for-ML学习资料汇总 - 机器学习所需数学知识一站式学习指南
随着人工智能和机器学习的快速发展,掌握相关的数学知识变得越来越重要。本文为大家整理了一份Mathematics for Machine Learning (ML)的学习资料汇总,涵盖了书籍、论文、视频课程等多种形式的优质资源,希望能够帮助读者系统地学习机器学习所需的数学基础知识。
📚 推荐书籍
- 《Mathematics for Machine Learning》
这本由Marc Peter Deisenroth等人编写的书籍是学习ML数学基础的绝佳起点。内容循序渐进,注重实例讲解,适合初学者入门。
- 《Probabilistic Machine Learning: An Introduction》
Kevin Patrick Murphy编写的这本书全面介绍了经典机器学习方法及其背后的原理,是深入理解ML算法的不二之选。
- 《The Mathematical Engineering of Deep Learning》
这本由Benoit Liquet等人编写的书籍深入浅出地讲解了深度学习的数学原理,涵盖了CNN、RNN、Transformer等多种模型结构。