Mathematics-for-ML学习资料汇总 - 机器学习所需数学知识一站式学习指南

Mathematics-for-ML学习资料汇总 - 机器学习所需数学知识一站式学习指南

随着人工智能和机器学习的快速发展,掌握相关的数学知识变得越来越重要。本文为大家整理了一份Mathematics for Machine Learning (ML)的学习资料汇总,涵盖了书籍、论文、视频课程等多种形式的优质资源,希望能够帮助读者系统地学习机器学习所需的数学基础知识。

📚 推荐书籍

  1. 《Mathematics for Machine Learning》

这本由Marc Peter Deisenroth等人编写的书籍是学习ML数学基础的绝佳起点。内容循序渐进,注重实例讲解,适合初学者入门。

书籍链接

  1. 《Probabilistic Machine Learning: An Introduction》

Kevin Patrick Murphy编写的这本书全面介绍了经典机器学习方法及其背后的原理,是深入理解ML算法的不二之选。

书籍链接

  1. 《The Mathematical Engineering of Deep Learning》

这本由Benoit Liquet等人编写的书籍深入浅出地讲解了深度学习的数学原理,涵盖了CNN、RNN、Transformer等多种模型结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值