【SCI2区】斑点鬣狗优化算法SHO-CNN-GRU-Attention用电需求预测Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍​

摘要

随着社会经济的快速发展,电力需求预测对电力系统的安全、稳定和高效运行至关重要。本文提出了一种基于斑点鬣狗优化算法 (Spotted Hyena Optimizer, SHO) 优化的卷积神经网络 (CNN) - 门控循环神经网络 (GRU) - 注意力机制 (Attention) 的用电需求预测模型 (SHO-CNN-GRU-Attention)。该模型利用 CNN 的空间特征提取能力,GRU 的时间序列特征提取能力,Attention 机制的权重分配能力,以及 SHO 算法的全局优化能力,对用电需求数据进行有效预测。通过 MATLAB 软件平台,对实际用电需求数据进行仿真实验,结果表明,SHO-CNN-GRU-Attention 模型相较于其他传统预测模型具有更高的预测精度和更强的泛化能力。该研究为电力需求预测提供了一种新的思路和方法,对电力系统的智能化发展具有重要意义。

关键词: 用电需求预测;斑点鬣狗优化算法;卷积神经网络;门控循环神经网络;注意力机制;MATLAB

1. 概述

电力需求预测是电力系统安全稳定运行的重要基础,它能够为电力公司提供可靠的电力负荷预测信息,进而优化发电调度、电力市场交易和电网规划,从而提高电力系统的运行效率和经济效益。近年来,随着人工智能技术的快速发展,基于机器学习的电力需求预测方法得到了广泛的应用。

传统的电力需求预测方法主要包括时间序列分析法、统计模型法和专家系统法等。这些方法往往需要大量的先验知识和经验,且在处理非线性、高维数据时存在局限性。而深度学习方法,尤其是 CNN、GRU 和 Attention 等模型,由于其强大的特征提取和非线性建模能力,在电力需求预测领域展现出巨大潜力。

CNN 擅长提取数据的空间特征,在图像识别等领域取得了巨大成功。GRU 作为循环神经网络 (RNN) 的一种变体,能够有效处理时间序列数据,在自然语言处理等领域应用广泛。Attention 机制可以根据不同时间步长的重要程度,自动分配权重,从而提高模型的预测精度。

然而,上述深度学习模型的训练过程往往依赖于大量的样本数据和人工调节参数,这在实际应用中存在一定的困难。为了解决这一问题,本文引入斑点鬣狗优化算法 (SHO) 对模型参数进行优化。SHO 算法是一种新型的元启发式优化算法,它模拟了斑点鬣狗的群体狩猎行为,具有全局搜索能力强、收敛速度快等优点,可以有效提高模型的预测精度和泛化能力。

本文基于上述思路,提出了一种基于 SHO-CNN-GRU-Attention 的用电需求预测模型。该模型充分利用 CNN、GRU、Attention 和 SHO 的各自优势,对用电需求数据进行有效预测。

2. 模型构建

2.1 SHO-CNN-GRU-Attention 模型结构

SHO-CNN-GRU-Attention 模型结构如图 1 所示,主要包括以下几个部分:

  • 数据预处理: 对原始用电需求数据进行清洗、归一化和特征工程等预处理,以提高模型训练效率。

  • CNN 模块: 利用 CNN 提取用电需求数据的时间和空间特征,包括卷积层和池化层。

  • GRU 模块: 使用 GRU 提取用电需求数据的时序特征,并输出隐藏状态向量。

  • Attention 模块: 通过 Attention 机制,对 GRU 输出的隐藏状态向量进行加权,以增强模型对重要信息的关注。

  • SHO 优化: 使用 SHO 算法优化 CNN、GRU 和 Attention 模块的参数,以提高模型的预测精度。

  • 预测输出: 模型最终输出对未来用电需求的预测值。

2.2 SHO 算法

SHO 算法模拟了斑点鬣狗的群体狩猎行为,包含三个阶段:

  • 探索阶段: 斑点鬣狗随机探索周围环境,寻找猎物。

  • 包围阶段: 斑点鬣狗逐渐包围猎物,并向猎物靠近。

  • 攻击阶段: 斑点鬣狗协同合作,对猎物进行攻击。

2.3 CNN 模块

CNN 模块采用多层卷积和池化操作,对用电需求数据进行空间特征提取。卷积层通过滑动卷积核对数据进行特征提取,池化层则对特征图进行降采样,从而减少计算量和防止过拟合。

2.4 GRU 模块

GRU 模块通过门控机制,对时间序列数据进行特征提取。GRU 包含三个门:更新门、重置门和输出门,它们分别控制信息的更新、重置和输出。

2.5 Attention 模块

Attention 模块通过计算不同时间步长特征的权重,对 GRU 输出的隐藏状态向量进行加权,以增强模型对重要信息的关注。常见的 Attention 机制包括 Soft Attention 和 Hard Attention 等。

3. 实验与结果分析

评价指标

本文采用均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 对模型进行评价,其计算公式如下:

  • RMSE:
    RMSE=1n∑i=1n(yi−y^i)2RMSE=n1∑i=1n(yi−y^i)2

  • MAE:
    MAE=1n∑i=1n∣yi−y^i∣MAE=n1∑i=1n∣yi−y^i∣

  • MAPE:
    MAPE=100n∑i=1n∣yi−y^i∣yiMAPE=n100∑i=1nyi∣yi−y^i∣

结果分析

SHO-CNN-GRU-Attention 模型在所有评价指标上都优于其他模型,表明该模型具有更高的预测精度和更强的泛化能力。这是因为 SHO 算法有效优化了 CNN、GRU 和 Attention 模块的参数,从而提高了模型的预测性能。

4. 结论

本文提出了一种基于 SHO-CNN-GRU-Attention 的用电需求预测模型,并通过 MATLAB 软件平台进行了仿真实验。结果表明,该模型相较于其他传统预测模型具有更高的预测精度和更强的泛化能力,为电力需求预测提供了一种新的思路和方法。

5. 未来研究方向

未来,可以从以下几个方面进行进一步研究:

  • 探索更多有效的特征工程方法,以提取更有效的特征信息。

  • 研究更先进的优化算法,以进一步提高模型的预测精度。

  • 将模型应用于电力系统其他领域,例如负荷分配、电网安全等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

  • 9
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斑点鬣狗优化算法(Spotted Hyena Optimization,简称SHO)是一种模拟斑点鬣狗狩猎策略的优化算法,它结合了搜索的灵活性和强度。当应用于基于BP(Back Propagation,反向传播)神经网络的故障识别时,其优化过程可以分为以下几个步骤: 1. **初始化**:创建一个包含随机解(即神经网络权重)的群体,这些解代表可能的网络结构。 2. **评估 fitness**:利用BP神经网络对每个解(网络配置)训练一个模型,然后通过预测数据集的结果来评估模型的性能,如准确率、召回率等指标。 3. **斑点检测**:类似于斑点鬣狗的领地划分,选择当前最优解作为“领地中心”,其他解则根据其距离优解的好坏被分类为“近斑”或“远斑”。 4. **位置更新**:斑点鬣狗会尝试捕获更接近“领地中心”的“近斑”,这涉及到适应性学习速率调整和权重更新,通常使用梯度下降或类似方法。 5. **突变与扩散**:部分“远斑”可能会尝试随机变异,生成新的解决方案,同时允许一些程度的扩散,增加算法的探索能力。 6. **迭代与终止条件**:算法会在多次迭代后,如果发现收敛或满足预设的停止条件(比如达到预定的迭代次数),就结束优化并选取最终最佳的神经网络模型。 SHO-BP 故障识别的数据分类流程是这样的:首先将原始设备的运行数据转化为可用于神经网络训练的特征表示;然后用 SHO 算法优化神经网络的权值和偏置,使其能有效地将正常状态与故障状态分开;最后,用训练好的神经网络对新数据进行预测,确定是否存在故障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值