函数设计与使用

一、计算小明爬楼梯的爬法数量

       假设一段楼梯共15个台阶,小明一步最多能上3个台阶。编写程序计算小明上这段楼梯一共有多少种方法。要求给出递推法和递归法两种代码。

       从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),同理,第14个、13个、12个台阶都可以这样推算,从而得到递归公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法(一步迈3个台阶上去、一步2个台阶+一步1个台阶、一步1个台阶+一步2个台阶、一步迈1个台阶分三步上去)。

二、抓狐狸游戏设计与实现

       编写程序,模拟抓狐狸小游戏。假设一共有一排5个洞口,小狐狸最开始的时候在其中一个洞口,然后玩家随机打开一个洞口,如果里面有狐狸就抓到了。如果洞口里没有狐狸就第二天再来抓,但是第二天狐狸会在玩家来抓之前跳到隔壁洞口里。如果在规定的次数内抓到了狐狸就提前结束游戏并提示成功;如果规定的次数用完还没有抓到狐狸,就结束游戏并提示失败。

from random import choice, randrange

def catchMe(n=5, maxStep=10):
    '''模拟抓小狐狸,一共n个洞口,允许抓maxStep次
       如果失败,小狐狸就会跳到隔壁洞口'''
    # n个洞口,有狐狸为1,没有狐狸为0
    positions = [0] * n
    # 狐狸的随机初始位置
    oldPos = randrange(0, n)
    positions[oldPos] = 1
    
    # 抓maxStep次
    while maxStep >= 0:
        maxStep -= 1
        # 这个循环保证用户输入是有效洞口编号
        while True:
            try:
                x = input('请输入洞口编号(0-{0}):'.format(n-1))
                # 如果输入的不是数字,就会跳转到except部分
                x = int(x)
                # 如果输入的洞口有效,结束这个循环,否则就继续输入
                assert 0 <= x < n
                break
            except:
                #如果输入的不是数字,就执行这里的代码
                print('要按套路来啊,再给你一次机会。')
                
        if positions[x] == 1:
            print('成功,我抓到小狐狸啦。')
            break
        else:
            print('今天又没抓到。')
            
        # 如果这次没抓到,狐狸就跳到隔壁洞口
        if oldPos == n-1:
            newPos = oldPos -1
        elif oldPos == 0:
            newPos = oldPos + 1
        else:
            newPos = oldPos + choice((-1, 1))
        positions[oldPos], positions[newPos] = 0, 1
        oldPos = newPos
    else:
        print('放弃吧,你这样乱试是没有希望的。')

# 启动游戏,开始抓狐狸吧
catchMe()

三、模拟汉诺塔问题 

       据说古代有一个梵塔,塔内有三个底座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上。有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一个盘子。在移动盘子的过程中可以利用B座,但任何时刻3个座上的盘子都必须始终保持大盘在下、小盘在上的顺序。如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C即可。

       编写函数,接收一个表示盘子数量的参数和分别表示源、目标、临时底座的参数,然后输出详细移动步骤和每次移动后三个底座上的盘子分布情况。

def hannoi(num, src, dst, temp=None):  #递归算法
    if num < 1:
        return

    global times    #声明用来记录移动次数的变量为全局变量
    # 递归调用函数自身,先把除最后一个盘子之外的所有盘子移动到临时柱子上
    hannoi(num-1, src, temp, dst)
    # 移动最后一个盘子
    print('The {0} Times move:{1}==>{2}'.format(times, src, dst))
    towers[dst].append(towers[src].pop())
    for tower in 'ABC':    #输出3根柱子上的盘子
        print(tower, ':', towers[tower])
    times += 1
    # 把除最后一个盘子之外的其他盘子从临时柱子上移动到目标柱子上
    hannoi(num-1, temp, dst, src)

#用来记录移动次数的变量
times = 1
# 盘子数量
n = 64
towers = {'A':list(range(n, 0, -1)), #初始状态,所有盘子都在A柱上
           'B':[],
           'C':[]
          }
# A表示最初放置盘子的柱子,C是目标柱子,B是临时柱子
hannoi(n, 'A', 'C', 'B')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值