一、计算小明爬楼梯的爬法数量
假设一段楼梯共15个台阶,小明一步最多能上3个台阶。编写程序计算小明上这段楼梯一共有多少种方法。要求给出递推法和递归法两种代码。
从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),同理,第14个、13个、12个台阶都可以这样推算,从而得到递归公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法(一步迈3个台阶上去、一步2个台阶+一步1个台阶、一步1个台阶+一步2个台阶、一步迈1个台阶分三步上去)。
二、抓狐狸游戏设计与实现
编写程序,模拟抓狐狸小游戏。假设一共有一排5个洞口,小狐狸最开始的时候在其中一个洞口,然后玩家随机打开一个洞口,如果里面有狐狸就抓到了。如果洞口里没有狐狸就第二天再来抓,但是第二天狐狸会在玩家来抓之前跳到隔壁洞口里。如果在规定的次数内抓到了狐狸就提前结束游戏并提示成功;如果规定的次数用完还没有抓到狐狸,就结束游戏并提示失败。
from random import choice, randrange
def catchMe(n=5, maxStep=10):
'''模拟抓小狐狸,一共n个洞口,允许抓maxStep次
如果失败,小狐狸就会跳到隔壁洞口'''
# n个洞口,有狐狸为1,没有狐狸为0
positions = [0] * n
# 狐狸的随机初始位置
oldPos = randrange(0, n)
positions[oldPos] = 1
# 抓maxStep次
while maxStep >= 0:
maxStep -= 1
# 这个循环保证用户输入是有效洞口编号
while True:
try:
x = input('请输入洞口编号(0-{0}):'.format(n-1))
# 如果输入的不是数字,就会跳转到except部分
x = int(x)
# 如果输入的洞口有效,结束这个循环,否则就继续输入
assert 0 <= x < n
break
except:
#如果输入的不是数字,就执行这里的代码
print('要按套路来啊,再给你一次机会。')
if positions[x] == 1:
print('成功,我抓到小狐狸啦。')
break
else:
print('今天又没抓到。')
# 如果这次没抓到,狐狸就跳到隔壁洞口
if oldPos == n-1:
newPos = oldPos -1
elif oldPos == 0:
newPos = oldPos + 1
else:
newPos = oldPos + choice((-1, 1))
positions[oldPos], positions[newPos] = 0, 1
oldPos = newPos
else:
print('放弃吧,你这样乱试是没有希望的。')
# 启动游戏,开始抓狐狸吧
catchMe()
三、模拟汉诺塔问题
据说古代有一个梵塔,塔内有三个底座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上。有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一个盘子。在移动盘子的过程中可以利用B座,但任何时刻3个座上的盘子都必须始终保持大盘在下、小盘在上的顺序。如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C即可。
编写函数,接收一个表示盘子数量的参数和分别表示源、目标、临时底座的参数,然后输出详细移动步骤和每次移动后三个底座上的盘子分布情况。
def hannoi(num, src, dst, temp=None): #递归算法
if num < 1:
return
global times #声明用来记录移动次数的变量为全局变量
# 递归调用函数自身,先把除最后一个盘子之外的所有盘子移动到临时柱子上
hannoi(num-1, src, temp, dst)
# 移动最后一个盘子
print('The {0} Times move:{1}==>{2}'.format(times, src, dst))
towers[dst].append(towers[src].pop())
for tower in 'ABC': #输出3根柱子上的盘子
print(tower, ':', towers[tower])
times += 1
# 把除最后一个盘子之外的其他盘子从临时柱子上移动到目标柱子上
hannoi(num-1, temp, dst, src)
#用来记录移动次数的变量
times = 1
# 盘子数量
n = 64
towers = {'A':list(range(n, 0, -1)), #初始状态,所有盘子都在A柱上
'B':[],
'C':[]
}
# A表示最初放置盘子的柱子,C是目标柱子,B是临时柱子
hannoi(n, 'A', 'C', 'B')