面向中高端深度学习模型、深度项目实战、技术教程、算法创新、顶级期刊/论文/毕设/竞赛一对一辅导

  • 博客(255)
  • 收藏
  • 关注

原创 基于深度学习的水果图像识别研究【k学长深度学习宝库】

本文基于Fruits-360数据集,设计了一个轻量级CNN模型实现对5种水果(苹果、葡萄、梨、香蕉、樱桃)的图像分类。模型采用3层卷积结构,通过数据增强和Adam优化器训练5轮,在验证集上取得良好效果。实验表明模型对简单背景图像识别准确率超过90%,但对复杂环境鲁棒性有限。分析显示该结构适用于小规模分类任务,但对其他数据集需调整。未来可优化网络结构、应用迁移学习并提升部署能力。研究为水果智能识别提供了可行方案。

2026-01-22 16:32:41 748

原创 用CNN,transformer,CNN-transfomer三种模型完成故障诊断【k学长深度学习宝库】

本文研究基于深度学习的隔离型DC-DC变换器故障诊断方法。针对DAB变换器开关管和二极管故障,构建包含八类单管故障和六类双管故障的仿真数据集,每组数据包含四个电压信号。研究采用CNN、Transformer及CNN-Transformer混合模型进行故障分类,实现端到端的特征提取与诊断。实验结果表明,所提方法能有效识别多种故障类型,准确率超过90%。该研究为电力电子设备智能诊断提供了新思路,有助于提升新能源系统可靠性。全文包含故障建模、特征提取、网络优化等关键技术,并通过大量仿真验证了方法的有效性。

2026-01-21 14:13:10 658

原创 bert实现网络暴力分析模型【k学长深度学习专栏】

中文网络暴力文本检测系统是一个基于深度学习技术的自然语言处理应用,专门用于识别中文社交媒体、论坛和网络平台中的网络暴力内容。该系统采用预训练语言模型BERT作为核心架构,通过监督学习方式对文本进行二分类(暴力/非暴力),并提供了全面的评估和可视化功能。深度学习,从入门到进阶,你想要的,都在这里。包含学习专栏、视频课程、论文源码、实战项目、云盘资源等。深度学习,从入门到进阶,你想要的,都在这里。包含学习专栏、视频课程、论文源码、实战项目、云盘资源等。预训练模型适配:专为中文文本优化,支持多种BERT变体。

2026-01-21 14:07:55 463

原创 基于Transformer的无人机对地突防轨迹预测方法研究【k学长深度学习宝库】

本文介绍了一个基于深度学习的无人机轨迹预测系统。该系统采用多模态神经网络架构,通过处理历史飞行数据(包括三维坐标和速度)来预测未来轨迹。系统包含数据预处理、模型训练、性能评估和可视化四大模块,支持滑动窗口技术处理序列数据。评估指标包括MSE、RMSE和MAE,并提供三维轨迹图等可视化工具。系统适用于空中交通管理等场景,但对数据质量和计算资源有一定要求。详情可访问k学长的深度学习宝库获取源码和教程。

2026-01-21 12:28:09 707

原创 k学长的深度学习宝库:YOLOv11改进:WTConv小波卷积提升大感受野与检测精度(ECCV 2024)

本文介绍了一种新型小波卷积层(WTConv),通过小波变换解决CNN大感受野带来的参数膨胀问题。WTConv利用多频率响应扩展感受野,参数仅对数增长,显著提升了特征提取效率。实验表明,在YOLOv11中应用WTConv构建的C3k2模块,相比基础模型减少了11.4万参数和0.2GFLOPs计算量,实现了有效的轻量化。该方法参数增长平缓、感受野扩大且形状偏差提升,为CNN改进提供了高效易集成的解决方案。

2026-01-12 16:07:50 871

原创 技术前沿 | AMD ROCm开发者生态落地中国,k学长深度学习宝库带你玩转开源AI开发

AMD携手Datawhale与魔搭社区共建"ROCm开发者专区",加速中国AI开发生态本地化进程。此次合作通过开源软件栈降低硬件门槛,结合头部社区资源培育开发者群体,反哺硬件产品市场渗透。"深度学习宝库"作为唯一受邀AI教育品牌亮相,凸显其在开发者培训环节的关键价值,成为连接技术供给与社区平台的重要桥梁。这一战略布局标志着AMD以开发者为中心的开放生态进入实质性落地阶段。

2026-01-05 14:01:22 252

原创 LSTM模型实现光伏发电功率的预测完整数据集代码详细注释

本文介绍了一个基于LSTM的光伏发电功率预测项目。项目通过处理风速、温度等气象数据和电力历史数据,构建了多层LSTM模型(隐藏层64单元)来预测未来发电功率。创新点包括:1)采用差异化的缺失值处理策略;2)使用24小时滑动窗口构建时间序列;3)结合标准化和特征选择优化数据质量。模型训练使用Adam优化器和MSE损失函数,通过验证集评估性能。结果显示该方案能有效预测连续时间序列值,为光伏发电预测提供参考。项目源码和详细教程可在"k学长的深度学习宝库"获取。

2026-01-04 16:00:07 1234

原创 基于bert预训练的微博情感分析6分类模型

本文介绍了一个基于BERT预训练模型的微博文本情感分类系统,能够识别愤怒、开心、中性、悲伤、惊讶和恐惧六种情感。项目采用PyTorch和Hugging Face Transformers框架,利用BERT模型捕捉中文文本的上下文语义,相比传统RNN/LSTM模型表现更优。系统包含数据预处理、模型训练与验证流程,支持模型本地化保存以便后续部署。创新点包括使用预训练语言模型提升小数据泛化能力,实现细粒度六分类,并提供了模型优化方向如尝试其他中文预训练模型、超参数调优和数据增强等。项目配套完整教程和资源,适合深度

2026-01-04 15:49:08 749

原创 基于Word2Vec和LSTM实现微博评论情感分析

本文介绍了一个基于LSTM的中文情感分析项目,通过深度学习技术对社交媒体文本进行情感分类。项目使用jieba进行中文分词和停用词过滤,采用Word2Vec生成词向量作为模型输入。LSTM模型架构包含嵌入层、LSTM层和全连接层,使用交叉熵损失函数和Adam优化器进行训练。创新点包括优化的数据预处理流程、自定义词向量生成和多层LSTM设计。实验结果显示,该模型能有效识别微博文本的情感倾向(正面/中性/负面),可应用于用户情感分析和市场研究。项目提供了完整的数据预处理、模型训练和评估代码。

2026-01-04 15:45:14 1072

原创 结合 Swin Transformer 与 LSTM 的残差自回归模型,用于高精度光学波前时序预测与相位重建

本文提出SwinLSTM模型,将Swin-Transformer融入LSTM细胞内部,通过窗口注意力机制替代传统卷积进行时空融合。创新点包括:1)在门控前使用Swin block进行空间-上下文交互;2)采用残差预测框架输出变化量Δ,提升对光学波前信号的建模能力;3)实现可控教师强制策略,使训练与评估逻辑一致;4)构建面向Zernike系数序列的端到端处理流程,支持从系数到相位图的可视化转换。实验表明,该方法在建模光学波前等时空信号时,相比传统ConvLSTM能更好地捕获长程依赖关系。完整实现代码已在k学长

2025-12-31 16:16:09 544

原创 从零开始构建多模态大模型MLLMfromScratch

本项目从零实现了一个多模态大模型(MLLM),包含Transformer基础架构、Vision Transformer(ViT)视觉模型、GPT-style语言模型(LLM)及多模态融合模块。项目采用模块化设计,完全手工实现核心组件,不依赖现有框架。实验结果显示:ViT在CIFAR-10上达到分类准确率;LLM生成了莎士比亚风格的文本;MLLM实现了基本的"看图说话"功能,但生成描述与真实标注存在差距。项目完整实现了训练和推理流程,提供了单元测试验证和实验结果分析,展示了从底层构建深度学

2025-12-31 16:11:50 989

原创 MiDaS:迈向鲁棒的单目深度估计:混合数据集实现零样本跨数据集迁移,零样本泛化能力”极强,广泛用作预训练 backbone

摘要:MiDaS模型通过跨数据集混合训练和尺度不变损失函数,解决了单目深度估计的数据依赖与泛化难题。其采用ResNet编码器+轻量解码器架构,融合3D电影等多样化数据,显著提升零样本泛化能力。尽管在细节预测和绝对尺度上存在局限,但催生了DPT、AdaBins等改进模型,推动深度估计从相对预测向绝对度量发展,最终演化为Depth Anything等通用型解决方案。该研究为计算机视觉中的三维感知提供了重要范式。(149字)

2025-12-25 16:23:15 520

原创 Monodepth2:自监督单目深度估计的改进-k学长深度学习专栏

摘要:Monodepth v2针对v1版本在无相机运动、遮挡和分辨率不足等场景下的局限性,提出了三大创新方法:最小重投影损失避免遮挡误差,自动掩码排除无效训练数据,全分辨率多尺度预测提升细节精度。尽管在反射区域和复杂边界仍存在缺陷,但该模型显著提升了自监督深度估计的鲁棒性。后续DPT、MiDaS等改进模型通过引入Transformer、多数据集训练等技术进一步提升了性能。更多深度学习资源可访问k学长的深度学习宝库获取。

2025-12-24 18:35:10 939

原创 Monodepth:基于左右一致性的无监督单目深度估计,单目估计的起步-k学长深度学习专栏

Monodepth是一种创新的单目深度估计方法,通过无监督学习实现深度预测。其核心思想是将深度估计转化为图像重建问题,利用双目相机的左右图像进行训练,无需真实深度标注。方法采用编码器-解码器结构预测视差图,并通过三种关键损失函数(外观匹配损失、视差平滑损失和左右一致性损失)来优化模型性能。最大的创新点是引入左右一致性约束,使模型能更准确地理解场景的几何结构。相比传统方法,Monodepth降低了数据获取成本,提高了深度预测的可靠性,适用于自动驾驶、AR/VR等多个领域。

2025-12-23 16:56:57 1001

原创 SAM (Segment Anything Model):万物皆可分割-k学长深度学习专栏

摘要: Segment Anything Model (SAM) 是首个通用分割基础模型,通过大规模预训练(SA-1B数据集,含11亿掩码)实现强大的零样本泛化能力。其核心创新包括:1)可提示分割(点、框等输入生成掩码);2)三模块架构(图像编码器ViT-Huge、提示编码器、轻量解码器);3)实时交互设计。然而,SAM存在高分辨率/小目标处理不足、计算开销大、专业领域泛化有限等缺陷。后续改进模型(如MobileSAM、HQ-SAM、MedSAM)针对轻量化、边界精度、跨领域适配等方向优化,推动分割技术向更

2025-12-18 18:54:06 1002

原创 Mask2Former:用于通用图像分割的掩码注意力掩码变换器,通用分割架构(语义!实例!全景)-k学长深度学习专栏

本文提出Mask2Former,一种基于masked attention的统一分割框架。研究背景源于现有分割任务(语义/实例/全景)的割裂处理,MaskFormer虽提出统一范式但掩码生成能力有限。核心创新包括:1)masked attention机制增强query与像素特征的交互;2)多尺度特征解码器设计;3)端到端任务无关训练。实验表明其在三类分割任务中均达SOTA,但存在计算开销大、小目标分割不足等缺陷。后续工作如MaskDINO、Open-Vocabulary版本等进一步优化了检测能力和开放词汇分割

2025-12-18 18:40:26 1089

原创 SegFormer:使用Transformer进行语义分割,简单而高效的设计-k学长深度学习专栏

SegFormer是一种高效简洁的语义分割框架,通过分层Transformer编码器(MiT)提取多尺度特征,结合极简MLP解码器实现全局与局部信息融合。其创新点在于:1)MiT编码器融合CNN多尺度特性和Transformer全局建模;2)轻量级解码器仅用MLP实现特征融合,无需复杂结构。该模型在多个基准测试中达到SOTA,兼具高效性和泛化能力,但也存在边界细节刻画不足、高分辨率计算压力等缺陷。后续改进模型如EdgeSegFormer、MobileSegFormer等针对性地优化了边界精度和计算效率。

2025-12-17 16:08:12 553

原创 nnU-Net:基于unet的医学图像分割自适应框架,自动配置超参数与结构-k学长深度学习专栏

本文介绍了nnU-Net这一医学图像分割框架的创新设计与应用价值。针对传统医学分割方法泛化性差、调参复杂的问题,nnU-Net通过自配置pipeline实现了网络结构、预处理、训练策略的自动化适配。核心创新包括:1)基于数据特性的自配置网络(2D/3D U-Net及级联组合);2)标准化的训练与推理流程;3)自动模型选择与集成。实验表明,该框架在MSD多数据集上取得领先性能。虽然存在计算成本高、依赖启发式规则等局限,但启发了后续改进方向,如结合Transformer、轻量化设计等。nnU-Net的价值在于将

2025-12-17 16:03:20 548

原创 Swin-UNet:使用 Swin Transformer 替代卷积块,扩大感受野-k学长深度学习专栏

本文提出Swin-UNet,首个纯Transformer架构的医学图像分割网络。通过将Swin Transformer与U-Net对称结构结合,利用移位窗口注意力机制实现全局依赖建模,同时保留跳跃连接以保持局部细节。创新性地采用Patch Merging/Expanding完成上下采样,摆脱了对CNN的依赖。实验表明该方法在医学分割任务中优于混合架构模型,但仍存在依赖预训练、仅支持2D图像、计算效率随分辨率提升而下降等局限。该研究为纯Transformer在医学图像处理中的应用提供了新思路。

2025-12-16 09:15:00 911

原创 TransUNet:Transformer 成为医学图像分割的强大编码器,Transformer 编码器 + U-Net 解码器-k学长深度学习专栏

本文提出TransUNet模型,首次将Transformer与U-Net结合用于医学图像分割。模型采用CNN提取局部特征后送入Transformer编码全局信息,通过U-Net式跳跃连接和级联上采样恢复细节。实验表明其在多器官CT和心脏MRI分割任务上优于传统方法。但存在计算开销大、依赖标注数据、边界恢复不够精细等缺陷,且3D扩展困难,限制了临床应用。该研究为医学图像分割提供了新思路,但仍需优化计算效率和细节处理能力。

2025-12-15 14:21:05 1409

原创 HRNet:深度高分辨率表示学习用于人体姿态估计-k学长深度学习专栏

HRNet是一种高分辨率网络架构,专为人体姿态估计设计。其核心创新在于全程保持高分辨率表征,通过并行多分辨率子网络和重复的多尺度融合机制,实现了更精准的关键点定位。相比传统方法,HRNet避免了高分辨率信息的丢失,使预测结果既清晰又准确。然而,该模型存在计算量大、结构复杂等缺陷,难以部署到轻量级场景。后续研究围绕轻量化改进、多人场景优化、Transformer融合等方向展开,并将HRNet的高分辨率思想拓展到语义分割、目标检测等其他视觉任务中。HRNet在精度上表现优异,但在实际应用中需权衡计算成本和性能需

2025-12-15 14:15:33 690

原创 U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏

医学图像分割模型UNet++的创新与局限 UNet++是针对医学图像分割需求提出的改进模型,通过嵌套密集跳跃连接和深度监督机制解决了U-Net存在的语义鸿沟问题。其核心创新包括:1)重新设计跳跃路径,通过逐级卷积缩小编码器与解码器特征间的语义差距;2)采用密集连接优化梯度流动;3)引入多尺度深度监督提升训练稳定性。实验显示其在多个医学数据集上IoU指标平均提升3.9%。但该模型存在计算成本高、实现复杂、训练资源需求大等缺陷。后续改进包括UNet3+的全尺度连接、Attention机制引入、轻量化改造及Tra

2025-12-14 15:58:59 1095

原创 ResUNet:U-Net 中加入残差块-k学长深度学习专栏

摘要:ResUNet是一种结合U-Net和残差学习的深度学习模型,用于航拍道路提取任务。该模型通过U-Net的"沙漏"结构实现特征提取与细节恢复,并引入残差块的"短路连接"解决深层网络训练难题。其创新点在于用残差块替换普通卷积层,形成双重信息通道,使浅层细节与深层语义特征更好融合。相比传统U-Net,ResUNet具有训练更轻松、信息流通更顺畅、参数更少性能更强三大优势,特别适合处理道路提取中的拓扑复杂性、尺度多样性和类内差异等挑战。模型结构包含编码器(特征压缩)和解

2025-12-04 15:46:59 821 1

原创 Attention U-Net:引入注意力门机制,胰腺影像分割必看经典-k学长深度学习专栏

它的核心是加入了“注意力机制”,让模型更敏感地捕捉前景像素(比如我们要分割的目标区域)。注意力U-Net就像戴上“透视镜”,先看大图大致方向(编码),然后聚焦猫的局部细节(注意力门),最后把猫完整画出来(解码)。输入:模型接收一个输入图像,尺寸通常表示为 H×W×D H \times W \times D H×W×D(高度、宽度、深度),深度可能代表通道数(如RGB或医学影像的模态)。每层都会用卷积(W)和激活函数(比如ReLU)处理数据,同时图像尺寸会缩小一半(比如从H1到H4,尺寸变成原来的1/8)。

2025-12-02 17:46:25 514 1

原创 DeepLab v3+:基于空洞可分离卷积的编码器解码器在语义分割中的应用-k学长深度学习专栏

DeepLab v3+是一种先进的语义分割模型,通过融合空洞卷积、ASPP模块和轻量解码器,解决了多尺度上下文感知与边界细化的矛盾。其创新点包括:1)利用ASPP模块捕捉多尺度语义信息;2)引入解码器结构恢复边界细节;3)采用深度可分离卷积提升效率。该模型采用"编码器-解码器"架构,编码器负责全局语义理解,解码器专注于边界优化。然而存在计算复杂度高、边界细节有限、上下文建模固定等缺陷。后续改进模型在轻量化、边界增强、上下文建模等方面进行了优化,如BiSeNet、HRNet和Transfo

2025-12-01 17:18:10 953

原创 Mask R-CNN:当时的实例分割基线-k学长深度学习专栏

摘要:Mask R-CNN是实例分割领域的里程碑式模型,通过三个关键创新解决了检测与分割的统一问题:1)在Faster R-CNN基础上增加掩码预测分支;2)采用RoIAlign技术消除量化误差;3)解耦分类与掩码预测任务。该模型采用骨干网络+RPN+三分支头部结构,实现了像素级分割效果。虽然存在推理速度慢、掩码分辨率低等局限,但为后续PANet、Cascade Mask R-CNN等改进模型奠定了基础,推动了实例分割技术的发展。(149字)

2025-11-28 19:18:35 516

原创 遥感图像分割方向怎么学

摘要:本文分享了一位研一学生从深度学习入门到进阶的经验。针对"跑通代码但不理解"的困境,作者提出三步法:1)模块化拆解网络结构;2)聚焦遥感图像分割核心模块;3)从简单修改入手优化模型。文章推荐了6个月进阶路线:1-2月夯实PyTorch基础,3-4月精读领域论文,5-6月实践创新。作者强调通过拆解基础模块、调试参数等实践,可以在3-6个月内实现从"会跑代码"到"能改模型"的突破。文末推荐了具体学习资源网站。

2025-11-28 16:34:04 928

原创 PSPNet :引入金字塔池化-k学长深度学习专栏

PSPNet提出了一种创新的金字塔池化模块(PPM),通过多尺度上下文聚合解决语义分割中的三大挑战:上下文不匹配、类别混淆和尺度极端问题。该网络在ResNet主干上构建1×1/2×2/3×3/6×6四个层级的池化分支,融合全局与局部特征,配合深度监督策略显著提升性能。在ADE20K、PASCAL VOC和Cityscapes等基准上取得突破性成果,其核心思想启发了DeepLab、UPerNet等后续模型。虽然存在计算开销大、边界模糊等局限,但PPM已成为语义分割领域的基础模块范式。

2025-11-27 14:29:04 690

原创 V-Net:三维医学影像分割的全卷积神经网络-k学长深度学习专栏

V-Net是一种专为3D医学图像分割设计的深度学习模型。它通过V型网络结构解决了传统2D CNN处理3D医学数据的局限性。V-Net的创新在于:1)采用Dice系数作为损失函数,有效解决医学图像中前景与背景极端不平衡的问题;2)引入残差学习和横向连接,提升训练效率和分割精度;3)使用数据增强解决医学数据稀缺问题。在PROMISE 2012数据集上的实验表明,V-Net能快速准确地进行3D医学图像分割,为临床诊断提供可靠支持。

2025-11-10 07:45:00 1293

原创 SegNet:一种用于图像分割的深度卷积编码器解码器架构-k学长深度学习专栏

本文介绍了语义分割技术及其代表性模型SegNet的架构与创新点。语义分割旨在为图像每个像素分配类别标签,实现场景细粒度理解。SegNet采用编码器-解码器结构,核心创新在于解码器利用编码阶段的最大池化索引进行非线性上采样,无需学习额外参数,能高效恢复特征图细节。相比传统CNN和反卷积网络,SegNet通过保存池化索引实现精确边界恢复,具有参数少、内存占用低等优势。文章详细解析了SegNet的编码器(基于VGG16卷积层)、解码器(上采样+卷积)和分类层结构,并对比了DeepLab等模型的空洞卷积技术。Seg

2025-11-09 16:10:36 867

原创 U-Net:用于生物医学图像分割的卷积网络,经典中的经典,后续所有创新改进的起点-k学长深度学习专栏

摘要:本文介绍了医学图像分割的三代技术演进。传统CNN只能进行“有/无肿瘤”的二分类;Ciresan的滑动窗口法通过局部补丁预测实现像素级定位,但效率低下且面临感受野与精度的矛盾;全卷积网络(FCN)采用编码-解码架构,通过收缩路径提取语义特征、扩张路径恢复空间细节,并利用跳跃连接保留精确定位信息,实现高效精准的端到端分割。FCN的U型结构通过卷积、池化、上采样等操作,在保持上下文感知的同时完成像素级分类,解决了医学图像分析中全局与局部信息平衡的关键问题。(149字)

2025-11-09 10:30:00 642

原创 FCN:用于语义分割的卷积网络,语义分割开山作-k学长深度学习专栏

摘要:本文探讨了全卷积网络(FCN)在语义分割中的应用。传统计算机视觉方法依赖人工设计特征,难以处理复杂场景。FCN通过将分类网络改造为全卷积形式,实现端到端的像素级预测,解决了全局语义与局部细节的矛盾。网络通过转置卷积上采样和多层特征融合(FCN-32s、FCN-16s、FCN-8s),逐步提升边界精度。实验表明,FCN在高效推理的同时,能结合深层语义与浅层细节,实现更精细的分割效果。

2025-11-08 15:38:59 998

原创 RT-DETR:在实时目标检测中,号称击败当时的YOLO ,DETR的重大的创新改进-k学长深度学习专栏

RT-DETR:实时端到端目标检测新范式 针对YOLO系列依赖NMS导致效率瓶颈和DETR计算成本高的问题,RT-DETR通过三大创新实现突破: 高效混合编码器:分离同尺度交互(高层特征使用注意力)与跨尺度融合(低层特征采用卷积),降低60%计算量; 最小不确定性查询选择:联合评估分类置信度与定位准确性,筛选高质量初始查询,提升3%AP; 动态解码器调节:支持推理时灵活裁剪层数(4-6层可调),无需重训练即可实现108FPS@53.1%AP,速度超YOLOv8 21倍。 该设计首次实现端到端检测器在精度和速

2025-11-07 10:30:00 730

原创 SSD:多尺度检测

SSD(Single Shot MultiBox Detector)是目标检测领域的里程碑模型,通过多尺度特征图和预设默认框的创新设计,在速度与精度之间取得平衡。其核心思想是在不同分辨率特征图上同时检测目标,并预先设置不同形状和大小的默认框,让网络只需微调即可预测目标位置。相比Faster R-CNN更快速(59 FPS),相比YOLOv1更精准(72.1 mAP)。但存在小目标检测差、默认框不够灵活等缺陷,后续改进模型如RetinaNet、YOLO系列和EfficientDet等进一步优化了特征融合和检测

2025-11-06 16:19:21 1007

原创 Fast R-CNN:开山鼻祖模型的进化,引入ROI Pooling

从 Fast R-CNN 的 秒级 → Faster R-CNN 的 百毫秒级,真正接近实时。Faster R-CNN 的关键在于:把候选框生成这一步,也交给 CNN 来做。2、 Fast R-CNN 的整体流程(对比 R-CNN)4、Faster R-CNN 的改进(核心创新:RPN)🚀 Fast R-CNN 的动机(为什么提出它?🔙 回顾 R-CNN 的问题(为什么需要改进?3、Fast R-CNN 仍然存在的缺陷。源码、配套笔记&讲解视频,点击文末名片。1、Fast R-CNN的背景和动机。

2025-11-06 16:17:40 599

原创 R-CNN:用于精确目标检测和语义分割的丰富特征层次结构,两阶段检测开山鼻祖

在 R-CNN 出现前,计算机视觉中的目标检测主要依赖于 人工设计的特征(如 SIFT、HOG)加上传统分类器(如 SVM)。以前的做法:像个“笨巡警”,拿着放大镜在整张图片上滑动,一点点看是不是有目标(滑动窗口法),又慢又容易漏。R-CNN 的做法:把每个候选区域丢进一个已经在 ImageNet 上训练好的 CNN,让它提取深度特征。以前的做法:靠“手工特征”(HOG、SIFT),就像画家用简单线条描物体,但往往不够丰富。R-CNN 的做法:先用一个“聪明助手”给你推荐“可能藏人的地方”。

2025-11-05 19:50:34 111

原创 DMDiff(2025):一种基于SAR光学数据融合的双分支多模态条件引导扩散模型-k学长深度学习专栏

DMDiff提出了一种基于扩散模型的多模态遥感图像去云方法,通过双分支网络分别提取SAR的结构信息和光学图像的光谱特征,再利用跨模态注意力机制实现特征融合。创新性地采用IAP策略直接预测无云图像而非噪声,有效解决了传统方法在遥感图像处理中易出现的光谱失真问题。实验表明该方法在PSNR等指标上显著优于现有技术,但存在计算量大、生成速度慢等不足。未来可结合加速采样策略和几何约束进一步优化。

2025-11-05 18:31:14 298

原创 Former-CR首次将基于Uformer架构用于SAR-光学厚云去除-k学长深度学习专栏

摘要: 针对地球观测中云层遮挡导致的光学影像质量下降问题,研究提出Former-CR模型,创新性地结合SAR雷达与光学影像的多模态数据,通过U型Transformer架构实现云层去除。模型采用双分支设计(重建分支+残差分支),利用局部增强窗口注意力(LeWin)兼顾全局结构与局部细节,并引入感知损失提升视觉真实性。实验表明,Former-CR在厚云场景下的修复效果优于传统方法,尤其在SSIM等指标上表现突出。然而,模型存在计算复杂度高、训练资源消耗大等不足,未来需进一步优化效率与泛化能力。

2025-11-05 10:45:00 1494

原创 DSen2-CR:利用深度残差神经网络和SAR光学数据融合技术实现Sentinel-2影像的云层消除-k学长深度学习专栏

DSen2-CR是一种融合SAR雷达与光学影像的深度学习去云方法。主要创新包括:1)首次将能穿透云层的SAR与光学数据结合,利用SAR提供云下地物结构;2)基于ResNet构建稳定残差网络,避免GAN的不稳定性;3)提出云自适应损失函数(CARL),在云区强制学习无云目标,在晴空区保持原图不变;4)构建全球真实云数据集SEN12MS-CR。不足在于简单拼接的异构数据融合方式易导致特征错位,且缺乏显式配准机制和全局建模能力。该工作开创了多源融合去云方向,启发了后续改进模型。

2025-11-04 16:27:24 670

原创 CloudTran++:基于轴变换网络的多时相卫星图像云层去除改进方法-k学长深度学习专栏

CloudTran++提出了一种创新的多时相遥感图像去云方法。针对现有模型忽略时间维度动态关系的问题,该模型通过时序注意力(TAM)和跨时间交互(CTB)模块,使Transformer能够理解时间序列中云与地物的演变规律。采用双解码器结构(Inner/Outer Decoder)分别处理时序细节和整体趋势,并引入特征对齐机制解决多时相差异。模型首先在低分辨率下完成时序分析,再通过上采样网络恢复高分辨率细节。相比传统方法,CloudTran++能够智能选择最优参考帧,实现时空一致的云去除效果,同时保持轻量高效

2025-10-31 10:00:00 861

【计算机视觉】基于OpenCV与U-Net的曲线车道线检测系统:融合多特征提取与图像分割的自动驾驶路径识别方法

内容概要:本文详细介绍了一个基于OpenCV与深度学习技术实现的曲线车道线检测系统,涵盖从图像去畸变、多特征提取(Sobel、HLS/Lab颜色空间)、二值化处理到车道线拟合的完整流程。系统结合传统图像处理与U-Net等编码器-解码器结构的语义分割模型,实现对复杂道路环境下曲线车道线的精准识别,并通过滑动窗口与多项式拟合进行后处理优化,提升检测结果的连续性与准确性。项目包含完整的代码、注释、运行示例及模型训练流程,具备硕士毕业设计难度。; 适合人群:具备Python和OpenCV基础,熟悉图像处理与深度学习基本概念,有一定项目实践经验的本科生、研究生或从事自动驾驶相关工作的技术人员; 使用场景及目标:①应用于自动驾驶或ADAS系统中的车道线识别模块开发;②学习如何融合传统图像处理与深度学习方法解决实际视觉任务;③掌握U-Net模型在道路场景分割中的应用与优化策略; 阅读建议:建议结合提供的代码与运行视频,逐步调试每一阶段的图像处理效果,重点关注相机标定、多通道特征融合与后处理拟合逻辑,深入理解各模块在整体系统中的作用。

2025-12-01

深度学习乐园项目案例分享:A074-基于RMBG大模型的AI抠图证件照换背景带GUI

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 项目 A074-基于RMBG大模型的AI抠图证件照换背景带GUI 的目标是为用户提供一种高效、自动化的证件照背景更换解决方案。项目基于先进的深度学习模型,具体使用了预训练的RMBG大模型,该模型专注于从图像中精准识别并分割前景和背景,使得用户能够轻松替换背景而不损伤前景对象的边缘质量。这类模型广泛应用于各种图像处理任务,尤其适合证件照背景替换、电子商务产品照片优化、图像编辑等场景。本项目通过图形用户界面(GUI)的集成,用户可以在一个友好的操作环境下,轻松上传照片、选择替换背景,并一键完成抠图操作,免去复杂的手动编辑。AI抠图技术通过对数以百万计的训练数据进行学习,能够处理多种复杂背景,自动分割出人像等前景对象,大幅提升了证件照等场景的工作效率和成像效果。

2025-01-25

深度学习乐园项目案例分享:A073-基于PP-OCR和ErnieBot的视频字幕提取和问答助手

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 项目 A073 是基于 PP-OCR 和 ErnieBot 实现的视频字幕提取与问答助手。其目标是通过先进的光学字符识别(OCR)技术和大规模预训练语言模型,为用户提供高效、准确的视频字幕解析和问答支持。PP-OCR 是一种轻量化、高效的 OCR 模型,专注于文本文字的检测和识别,尤其适用于多种场景下的视频字幕提取。通过该模型,可以从视频中提取字幕信息,并为后续的文本分析和处理提供基础数据。与此同时,ErnieBot 是由百度开发的自然语言处理(NLP)模型,基于 Transformer 架构并结合预训练与知识增强技术,能够理解上下文并生成高质量的文本回答。该项目将 PP-OCR 与 ErnieBot 有机结合,首先通过 PP-OCR 从视频中提取字幕,然后使用 ErnieBot 处理字幕文本,从而实现自动问答功能。其应用场景广泛,涵盖了视频内容分析、知识检索、教育视频辅助工具等,为用户提供便捷的智能问答体验,节省大量的人工处理时间。

2025-01-25

深度学习乐园项目案例分享:A066-WaveNet模型实现电力预测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 时间序列预测在电力系统管理、负荷预测和能源优化等领域具有重要意义。传统的单向长短期记忆网络(LSTM)因其在处理时间序列数据中的优势,广泛应用于此类任务。随着深度学习技术的不断发展,WaveNet作为一种基于卷积的架构,以其强大的序列建模能力,在时间序列预测中展现出巨大潜力。本文旨在通过对比分析,探讨WaveNet相较于传统LSTM在电力数据预测中的优势与不足,并为后续模型选择与优化提供参考。

2025-01-23

深度学习乐园项目案例分享:A061-TCN模型实现电力数据预测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 时间序列预测在电力系统管理、负荷预测和能源优化等领域具有重要意义。传统的单向长短期记忆网络(LSTM)因其在处理时间序列数据中的优势,广泛应用于此类任务。随着深度学习技术的不断发展,Temporal Convolutional Networks(TCN)作为一种基于卷积的架构,以其独特的结构和强大的序列建模能力,在时间序列预测中展现出巨大潜力。本文旨在通过对比分析,探讨TCN相较于传统LSTM在电力数据预测中的优势与不足,并为后续模型选择与优化提供参考。

2025-01-22

深度学习乐园项目案例分享:A059-MobileViT模型实现图像分类

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目的目标是实现基于MobileViT模型的图像分类任务,旨在为移动端设备提供高效、轻量级的图像分类解决方案。随着移动设备的计算能力不断提升,对于深度学习模型的高效性和准确性提出了更高的要求。MobileViT模型结合了卷积神经网络(CNN)和视觉Transformer的优势,既保持了传统CNN模型的高效性和局部特征提取能力,又通过Transformer的全局注意力机制增强了模型对图像全局信息的理解能力。因此,MobileViT特别适合应用于资源有限的环境,例如智能手机、嵌入式设备等,在这些场景下,模型的推理速度和准确性至关重要。本项目基于Keras框架实现MobileViT模型,通过优化模型架构,使其能够在不损失性能的前提下减少模型的参数量和计算复杂度,从而提升在低资源设备上的表现。该模型能够有效地处理不同类别的图像分类任务,广泛应用于自动驾驶、医疗图像分析、智能家居等多个领域。通过该项目的实现,开发者可以深入理解如何构建、训练和优化一个高效的深度学习模型,并掌握在实际场景中部署此类模型的方法和技巧。

2025-01-22

深度学习乐园项目案例分享:A057-PCC Net模型实现行人数量统计

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com PCC Net是一种用于拥挤场景下行人计数的深度学习模型。该项目的目标是利用神经网络,准确地统计给定区域内的行人数,输入可以是图像或视频帧。行人计数广泛应用于交通管理、活动监控以及城市规划等领域。在该项目中,通过卷积层与兴趣区域(ROI)池化结合,提取图像特征,这些特征进一步用于预测行人密度图、行人数目,并生成分割输出。该系统能够应对实际场景中的各种挑战,如不同的人群密度、遮挡以及复杂的背景,使其在现实世界中具有良好的适应性。模型使用PyTorch实现,并结合了归一化、数据增强等数据预处理技术,以提升泛化能力。

2025-01-22

深度学习乐园项目案例分享:A030-DIN模型实现推荐算法

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 项目A030-DIN的核心是通过深度学习技术实现个性化推荐算法,旨在为用户提供精准、高效的商品或内容推荐。在现代电子商务、社交媒体及内容平台中,推荐系统作为核心功能,极大地提升了用户体验。DIN(Deep Interest Network,深度兴趣网络)是一种专门针对用户行为数据进行建模的深度学习模型,通过捕捉用户历史行为中的兴趣点,动态地生成推荐结果。DIN模型的一个显著特点是,它能够根据用户的当前兴趣动态调整推荐内容,不仅仅是依赖于用户的全局行为历史。

2025-01-22

深度学习乐园项目案例分享:A029-AlexNet模型实现鸟类识别

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 项目A029旨在通过AlexNet深度学习模型实现鸟类识别。背景在于,鸟类识别作为图像分类任务的一个重要应用,能够帮助生物学家、自然爱好者及环境保护工作者有效识别不同种类的鸟类。随着计算机视觉技术的发展,基于深度学习的卷积神经网络(CNN)在图像识别领域表现出了卓越的能力。AlexNet作为经典的CNN架构之一,在2012年ImageNet比赛中取得了突破性成果,并成为深度学习领域广泛使用的模型。 本项目使用AlexNet模型对鸟类图像数据集进行训练和测试,最终实现高精度的鸟类分类。AlexNet通过多个卷积层和全连接层组合,可以提取图像的特征,从而有效区分鸟类的不同种类。应用场景主要包括:自动物种识别、生态环境监测、野外科研辅助等。在本项目中,通过对鸟类图像数据的预处理、模型训练和评估,展示了如何应用AlexNet解决复杂的图像分类问题。

2025-01-22

深度学习乐园项目案例分享:A028-引入SE模块和注意力机制解决VGG16过拟合实现新冠肺炎图片多分类

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目的目标是通过深度学习模型VGG16,实现对新冠肺炎图像的多分类任务,以帮助医疗人员对患者的影像进行快速、准确的诊断。新冠肺炎自爆发以来,利用医学影像如X光和CT扫描进行疾病诊断已成为重要手段之一。随着数据量的增加,基于人工智能的图像分析方法逐渐显现出其优势,能够有效提高检测效率并减少误诊率。该项目基于预训练的VGG16模型,通过对肺部CT或X光影像进行分类,实现对不同类型的肺部病变的分类识别。VGG16模型是深度卷积神经网络中的经典网络,具有16层网络结构,能够捕捉图像中的细微特征,适用于医学图像分析。本项目通过迁移学习,将VGG16的卷积层权重应用于新冠肺炎图片分类任务,并通过微调模型,使其适应于具体的医学影像数据集。最终目标是构建一个高效且稳定的深度学习模型,帮助医疗人员对肺炎患者进行辅助诊断,提高诊断的准确性和效率,同时减轻医疗系统的负担。

2025-01-22

深度学习乐园项目案例分享:A027-CNN-LSTM住宅用电量预测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目是基于深度学习技术的住宅用电量预测模型,旨在通过分析住宅用户的历史用电数据,准确预测未来的用电需求。随着智能电网和可再生能源的快速发展,电力公司和能源管理系统对用户用电模式的精确预测需求日益增大,从而实现更有效的能源调度和资源分配。项目采用了结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的混合模型。CNN擅长从原始时间序列数据中提取局部特征,捕捉用户用电量的趋势和周期性特征,而LSTM则可以对时间序列中的长期依赖性进行建模,能够更好地捕捉用电量变化中的复杂时间关系。通过这种组合模型,项目能够提高对未来用电量变化的预测精度,从而为电力公司提供智能调度、负荷平衡等决策支持。本模型适用于多种住宅用户的用电场景,特别是用于那些有复杂用电行为模式的住宅用户预测需求,旨在通过智能化的分析与预测,优化电力系统的运营效率。

2025-01-22

深度学习乐园项目案例分享:A056-KerasCV YOLOv8实现交通信号灯检测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在通过深度学习模型实现交通信号灯的检测,以提高交通管理系统的智能化水平,增强驾驶辅助功能。随着智能交通系统的快速发展,准确地识别交通信号灯对于无人驾驶汽车和高级驾驶辅助系统(ADAS)至关重要。该项目采用YOLOv8(You Only Look Once version 8),这是一个基于KerasCV实现的目标检测模型,具备实时性和高效性,在复杂环境下能够快速、准确地识别目标。YOLOv8是YOLO系列中的最新版本,具有更轻量化的结构和更高的检测精度,非常适合嵌入式设备和实际应用场景。项目利用交通信号灯作为训练数据集中的主要目标,通过该模型进行高效检测,从而能够在不同光线、天气条件下识别红灯、黄灯和绿灯,并结合后续的应用程序,实现对驾驶行为的智能反馈和控制。本项目的目标是在各种复杂道路环境下,开发一个具备高精度、低延迟的交通信号灯检测系统,助力智能交通和自动驾驶的发展。

2025-01-21

深度学习乐园项目案例分享:A053-SSD融合FERPlus模型实现面部情绪识别

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 面部情绪识别是一项通过计算机视觉和深度学习技术自动分析和识别人类面部表情的任务。在社会交互、心理分析、情绪监测等多个领域中具有广泛的应用前景。本项目的目标是利用深度学习模型,设计一个能够识别不同面部情绪(如快乐、愤怒、悲伤、惊讶等)的系统,并实时检测视频或图像中的表情变化。项目使用了基于SSD(Single Shot Multibox Detector)的面部检测算法,并结合情感分类模型实现表情识别。SSD是一种常用于目标检测的深度学习模型,可以通过卷积神经网络(CNN)结构高效地在图片中定位和识别目标。本项目的检测部分采用SSD模型进行人脸定位,而情感分类部分则使用预训练模型进行微调,从而在复杂背景中实现高效、精确的情绪识别。整个流程包括了数据预处理、人脸检测、表情特征提取及分类预测。本项目可以应用于人机交互系统、智能家居监控、在线教育情绪分析以及汽车驾驶员情感监测等场景,从而提升用户体验和行为分析的智能化水平。

2025-01-21

深度学习乐园项目案例分享:A050-银行卡数字识别

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在通过深度学习技术实现光学字符识别(Optical Character Recognition, OCR)系统,自动识别图像中的字符并进行分类与标注。项目背景基于实际场景中对银行卡、身份证等文本信息的自动化识别需求,提升在金融、身份验证等领域的效率。我们选择使用基于卷积神经网络(CNN)和模板匹配的混合模型,并结合图像处理技术(例如轮廓检测、形态学操作)进行特征提取和识别。该模型通过分割输入图像中的每个字符区域,并使用预先构建的数字模板进行匹配比对,从而实现字符的精准识别与分类。主要使用的模型包括经典的ResNet卷积神经网络作为编码器,用以提取图像中的高级特征,再结合多层感知器(MLP)进行字符分类。项目的最终目标是开发一个高效、精准的OCR识别系统,能够在噪声和复杂背景的条件下稳定输出准确的识别结果,适用于身份验证、票据自动处理、文档扫描等多种应用场景。该项目实现了从数据预处理、模型训练到结果输出的完整流程,为后续模型的优化和扩展提供了良好的基础。

2025-01-20

深度学习乐园项目案例分享:A049-基于opencv的人脸闭眼识别疲劳监测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在实现基于眼部特征的眨眼检测,通过监测眼睛开闭状态来计算眨眼次数,从而应用于疲劳监测、注意力检测等场景。使用了面部特征点检测算法,以及眼部特征比率(EAR, Eye Aspect Ratio)来判断眼睛的闭合状态。当EAR值低于设定的阈值时,系统判定为眨眼。整个项目采用了Dlib库进行面部特征点定位,并使用OpenCV进行视频流的实时处理和可视化。通过设定合适的阈值和连续帧数参数,该模型能够准确判断并统计眨眼次数。该项目适用于基于视频流的实时眨眼检测场景,并可进一步扩展到疲劳驾驶检测、医疗健康监测以及基于表情的交互应用中。

2025-01-20

深度学习乐园项目案例分享:A048-基于opencv答题卡识别判卷

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在开发一种自动化的试卷判分系统,通过图像处理技术对试卷中的多选题答案进行识别和评分。该项目采用了基于OpenCV的图像处理方法和深度学习模型,主要用于识别扫描图像中的试卷内容,提取考生的作答区域,并根据预设的正确答案进行自动评分。项目的核心技术包括边缘检测、轮廓识别、透视变换和Otsu阈值分割等。通过一系列图像处理操作,将输入的试卷图片转化为标准化的矩形结构,并根据候选区域的轮廓特征确定每道题目的答案。该项目的应用场景包括教育评估、考试系统自动化和作业批改等。最终实现了通过图像识别对多选题进行准确评分,极大提高了试卷批改的效率和准确性。

2025-01-20

深度学习乐园项目案例分享:A022-GAN模型实现二次元头像生成

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在利用深度学习技术实现二次元头像的自动生成。该项目的背景来源于对二次元艺术作品的广泛需求和兴趣,尤其是在动漫、游戏等领域,二次元头像广泛应用于角色设计和用户头像生成。本项目采用了生成对抗网络(GAN),具体使用了DCGAN(Deep Convolutional Generative Adversarial Network)模型。这类模型由生成器和判别器两个网络组成,通过相互对抗学习,生成器能够生成逼真的二次元头像,而判别器则对生成的头像进行真假辨别,从而推动生成器不断改进其输出。通过此模型,用户可以生成各种风格的二次元头像,满足个性化头像定制需求。DCGAN模型具有良好的训练稳定性,适合处理图像生成任务。本项目的应用场景涵盖了动漫角色设计、游戏开发中的角色定制以及用户个性化社交头像的生成。

2025-01-16

深度学习乐园项目案例分享:A021-efficientnet-b3模型实现动物图像识别与分类

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目的目标是利用深度学习技术实现对动物图像的识别与分类。随着计算机视觉技术的快速发展,图像分类已经成为了机器学习的重要应用领域之一。通过对图像中动物的种类进行识别,可以应用于许多实际场景中,如野生动物监测、宠物识别等。本项目基于EfficientNet-B3模型,它是一种经过优化的卷积神经网络,能够在较低计算资源消耗的情况下实现高精度的图像分类。

2025-01-16

A020-LSTM模型实现电力数据预测

本项目旨在通过使用深度学习模型来实现电力需求的预测。随着智能电网的发展和电力消耗的增加,预测电力需求对电力系统的优化管理和资源分配具有重要意义。本项目的核心任务是基于历史电力数据,应用长短期记忆网络(LSTM)来构建预测模型。LSTM 作为一种循环神经网络,擅长处理时间序列数据,并能够捕捉长期依赖关系,特别适合电力数据这种具有时序性的应用场景。

2025-01-16

深度学习乐园项目案例分享:A017-resnet模型实现瓜果蔬菜图像识别分类苹果香蕉梨西红柿大豆菠菜玉米黄瓜葡萄橙子菠萝石榴西瓜萝卜共4个G数据

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目的目标是开发一个基于ResNet18深度学习模型的果蔬图像分类系统。随着现代农业与人工智能的结合,智能果蔬分类技术在供应链、生产和销售管理中扮演了越来越重要的角色。本项目的背景源于提升果蔬分类效率的需求,通过使用计算机视觉技术自动识别和分类不同种类的果蔬。项目使用了经典的卷积神经网络ResNet18,它在图像识别领域表现出色,尤其适合处理果蔬这种复杂且多样化的视觉数据。ResNet18凭借其深度残差结构,能够在保留模型性能的前提下有效减少梯度消失问题,使其在实际应用中稳定高效。通过训练大量果蔬图像数据,模型可以准确区分不同类别,从而实现智能化的自动分类,提升效率并减少人工误差。本项目的应用场景广泛,包括农业自动化、智能超市货架、果蔬质量检测等领域。

2025-01-14

深度学习乐园项目案例分享:A026-DeepFM模型预测高潜购买用户

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目的目标是利用深度学习模型DeepFM(Deep Factorization Machine)来预测高潜购买用户,从而提高营销的精准度和销售转化率。随着电商平台的用户行为数据不断积累,如何有效识别出潜在的高价值用户是各大平台优化资源配置、提升盈利能力的重要任务。DeepFM模型结合了传统的FM模型与深度神经网络的优点,既能够通过因子分解的方式处理稀疏特征(例如用户与商品的交互数据),也可以通过深度学习来捕捉高阶的特征组合关系。因此,DeepFM非常适合处理像电商这种复杂的推荐场景。项目中,数据主要包括用户行为、商品特征及交互信息。通过对这些数据进行预处理、特征提取,模型可以预测用户未来的购买行为。DeepFM模型通过同时训练因子分解层和深度神经网络,既能对显性特征进行准确建模,又能自动学习隐性特征交互。该模型不仅在推荐系统中有广泛应用,还可以被用于广告点击率预测、个性化推荐、用户购买意图分析等场景,极大地提升了商业决策的效率和准确性。

2025-01-15

深度学习乐园项目案例分享:A025-fasterRCNN模型实现飞机类目标检测

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 项目 A025 是基于 Faster R-CNN 模型实现的飞机类目标检测任务。该项目的主要目标是开发一个能够在图像中准确识别并定位飞机的深度学习模型,为自动化监控、卫星图像分析以及军事领域的目标检测提供解决方案。随着深度学习技术的进步,卷积神经网络(CNN)已经在图像分类和物体检测等任务中展现了强大的能力。而 Faster R-CNN 作为其中的经典目标检测模型,结合了区域提议网络(RPN)和基于特征图的分类与回归模块,使得目标检测变得更加高效且精确。在此项目中,我们使用 Faster R-CNN 模型来处理复杂的航空图像数据,识别其中的飞机目标。Faster R-CNN 的结构分为两大部分:首先,区域提议网络生成一系列可能包含目标的候选区域;其次,这些候选区域会被进一步分类为飞机或背景,并进行精确定位。这一方法较之于传统的基于滑窗或选择性搜索的目标检测方法,能够更好地平衡检测速度与精度,在实际应用中具备更强的可扩展性和稳定性。

2025-01-15

深度学习乐园项目案例分享:A023-CNN模型实现mnist手写数字识别

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 该项目是一个基于Pytorch实现的CNN(卷积神经网络)模型,用于mnist手写数字识别。mnist数据集是机器学习和计算机视觉领域的经典测试数据集,包含60,000张28x28像素的灰度手写数字图像,分为0到9共10个类别。项目的目标是通过深度学习模型准确识别这些手写数字,提升模型的分类精度。在本项目中,采用了卷积神经网络(CNN)作为核心模型,CNN因其在图像处理方面的出色表现而被广泛应用。CNN能够自动提取图像中的特征并进行分类,减少了对人工特征提取的依赖。该模型主要由卷积层、池化层和全连接层组成,通过多次迭代训练模型参数,使其在测试集上的识别准确率不断提升。该项目的应用场景非常广泛,手写数字识别不仅可以用于字符识别系统,还能够应用于银行票据识别、表单录入等场景。在机器学习入门中,mnist手写数字识别也是一个非常重要的练习,可以帮助初学者深入理解深度学习模型的基本原理和实现方法。

2025-01-15

深度学习乐园项目案例分享:A019卫星图像道路检测DeepLabV3Plus模型

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在实现卫星图像中的道路检测任务,利用先进的深度学习分割模型 DeepLabV3Plus 对道路区域进行精确分割。卫星图像中的道路检测在智能城市建设、无人驾驶导航等领域具有重要应用价值。传统方法难以应对高分辨率图像的复杂性,而深度学习方法通过学习特征表示,可以在大规模数据集上取得良好的性能。本项目基于 PyTorch 框架,使用了 segmentation_models_pytorch 库中的 DeepLabV3Plus 模型,该模型采用了 ResNet50 作为编码器,并利用了 ImageNet 预训练权重加速训练过程。我们对输入的卫星图像进行了预处理和增强,创建了道路的二分类任务(背景与道路)。通过 DiceLoss 作为损失函数和 IoU 作为评估指标,模型通过多轮迭代优化来提升分割精度。训练过程中,我们将数据集分为训练集和验证集,并进行数据增强以提升模型的泛化能力。最终,最佳模型根据验证集上的 IoU 得分进行保存,用于后续的实际部署与评估。

2025-01-14

深度学习乐园项目案例分享:A018-TransUNet模型创新图像分割实战

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 该深度学习项目主要使用了一种称为TransUNet的模型,用于图像分割任务,特别适用于医学图像处理或其他需要高精度分割的场景。TransUNet结合了传统的卷积神经网络(CNN)和自注意力机制(Transformer),通过编码器提取图像特征,并利用多头注意力机制提升特征表达,最终通过解码器生成高分辨率的分割图像。项目的目标是构建一个高效的分割模型,帮助自动处理复杂的图像分割任务。本项目选用了预训练的ResNet50作为编码器,以此获得深度的图像特征,并通过自定义的解码器对图像进行逐步复原。关键技术亮点在于:1. 使用了Transformer模块,使得模型能够捕捉到更广泛的上下文信息;2. 利用跳跃连接和多头注意力机制,加强了特征融合能力,提升了分割精度。模型的输入图像为224x224像素,输出为分割后的图像,模型适合用于各种医学图像或自然图像的分割应用场景。

2025-01-14

深度学习乐园项目案例分享:A016-基于keras的停车场车位识别

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 该项目旨在利用深度学习模型与计算机视觉技术,对停车场中的车位进行检测和状态分类,从而实现智能停车管理系统的功能。随着城市化的发展,停车场管理面临着车位检测效率低、停车资源分配不均等问题,而传统的人工检测方法不仅耗时费力,且难以适应大规模停车场的实时需求。为此,本项目提出了一种基于图像处理和深度学习的解决方案,通过摄像头实时获取停车场视频或图像数据,并借助卷积神经网络模型(Convolutional Neural Network, CNN)对车位进行自动识别、位置标注以及空闲与占用状态的分类。项目使用了VGG16作为基础模型,并通过数据增强、迁移学习等技术对车位状态进行精确预测。应用场景包括:停车场监控系统、车位引导系统以及停车资源管理平台等。该方案能够显著提升停车场管理效率,减少停车时间,提高用户体验,并为未来智慧城市停车管理系统的设计提供了参考与借鉴。整体项目分为数据预处理、车位检测、状态分类、结果可视化等模块,并采用Python与Keras库进行模型训练和部署,具有可扩展性和较高的应用价值。

2025-01-13

深度学习乐园项目案例分享:A008-基于YOLOv8-deepsort算法的智能车辆目标检测车辆跟踪和车辆计数

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 该项目基于Ultralytics YOLOv8与DeepSORT跟踪算法,旨在实现目标检测与多目标跟踪的集成。YOLOv8是Ultralytics推出的最新YOLO系列模型,以其快速、准确的目标检测能力而著称,适用于实时视频流处理和复杂场景中的目标识别。项目主要应用场景包括自动驾驶、智能监控以及无人机导航等。通过将YOLOv8与DeepSORT相结合,系统能够在检测到物体后对目标进行实时跟踪,并为每个物体分配唯一的ID,从而实现多目标追踪功能。这种方法不仅可以跟踪静止和移动物体,还能在目标遮挡和重叠时保持良好的跟踪效果。项目的核心是将YOLOv8检测模型与DeepSORT追踪器进行融合,并通过使用自定义数据集来提升检测和跟踪的整体性能。此外,该项目采用了Python语言与PyTorch框架构建,适合进行深度学习模型的二次开发与应用扩展。

2025-01-12

深度学习乐园项目案例分享:A011-BertForSequenceClassification模型实现微博文本情感三分类提升

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在构建一个基于BERT(Bidirectional Encoder Representations from Transformers)模型的中文情感分类系统,能够自动分析社交媒体上的文本内容并预测其情感倾向。随着社交媒体的普及,用户生成的大量文本数据中蕴含着丰富的情感信息,因此能够有效地挖掘和分析这些情感数据对于市场分析、用户反馈管理以及公共情感动态监测等领域具有重要意义。BERT模型是目前最为广泛使用的自然语言处理模型之一,依赖于强大的Transformer结构,可以充分利用上下文信息,理解语言的复杂语义关系,从而在各类文本分类任务中表现出色。本项目通过对微博数据集进行处理和标注,应用BERT模型实现对不同情感(积极、中立、消极)进行分类预测。在具体实现中,项目使用了预训练的BERT基础模型作为文本表示学习的核心,结合PyTorch深度学习框架来搭建模型,并使用数据清洗、分词处理、模型训练、评估等完整流程,旨在为中文情感分类提供一个高效的解决方案,提升文本情感分类的准确率和泛化能力。最终,该模型可以

2025-01-12

snet50模型的船型识别与分类系统研究

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在实现基于深度学习的船型识别系统,主要针对不同类型船只的图像进行自动分类。该项目的背景是随着海洋监控、海事安全和船只管理需求的不断增长,快速准确地识别海上船只的类型成为一项重要的技术挑战。传统的船只识别方法主要依赖人工特征提取和规则匹配,但由于海上环境复杂多变,如光照、船体角度、海况等因素影响,这种方法的表现较为有限。因此,本项目采用深度学习模型,充分利用卷积神经网络(CNN)的强大特征提取能力,通过学习大规模的船只图像数据集来提升识别精度。项目中选用的模型是基于经典的ResNet-50结构,并结合迁移学习策略来提高模型的收敛速度和泛化能力。具体应用场景包括:海上交通管控、海事安全预警、无人机巡航系统等。通过对输入图像的自动分类,本项目能够识别如货船、渔船、帆船、军舰等多种常见船型,为海洋管理提供准确、可靠的技术支持。最终目标是开发一个能够高效处理和识别多种船型的系统,并通过不断优化模型性能来满足实际应用需求。

2025-01-12

深度学习乐园项目案例分享:A006-BiLSTM和CRF模型实现NER中文命名实体识别完整源码可运行

点击查看,完整项目演示视频,更有数百个深度学习项目案例:zzgcz.com 本项目旨在开发一个基于深度学习的中文命名实体识别(Named Entity Recognition, NER)系统。命名实体识别是自然语言处理(Natural Language Processing, NLP)领域的重要任务之一,广泛应用于信息提取、文本分类、知识图谱构建等多个场景中。项目采用了双向长短时记忆网络(BiLSTM)与条件随机场(CRF)模型相结合的架构,通过深度学习模型自动学习文本中的实体边界和类型。该模型能够识别出三种类型的命名实体:人名、地名和组织名,并基于TensorFlow框架实现。中文NER具有独特的挑战,如缺乏显式的词边界以及实体上下文依赖较强,本项目通过对上下文信息的捕捉以及序列标注的优化来提升识别的准确性。最终目标是开发一个性能稳定、可扩展、易于部署的中文命名实体识别系统,为中文信息处理提供可靠的基础模块。

2025-01-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除