1. 项目简介
该深度学习项目主要使用了一种称为TransUNet的模型,用于图像分割任务,特别适用于医学图像处理或其他需要高精度分割的场景。TransUNet结合了传统的卷积神经网络(CNN)和自注意力机制(Transformer),通过编码器提取图像特征,并利用多头注意力机制提升特征表达,最终通过解码器生成高分辨率的分割图像。项目的目标是构建一个高效的分割模型,帮助自动处理复杂的图像分割任务。
本项目选用了预训练的ResNet50作为编码器,以此获得深度的图像特征,并通过自定义的解码器对图像进行逐步复原。关键技术亮点在于:1. 使用了Transformer模块,使得模型能够捕捉到更广泛的上下文信息;2. 利用跳跃连接和多头注意力机制,加强了特征融合能力,提升了分割精度。模型的输入图像为224x224像素,输出为分割后的图像,模型适合用于各种医学图像或自然图像的分割应用场景。
2.技术创新点摘要
-
Transformer与UNet的融合:该模型采用了TransUNet架构,将Transformer的多头自注意力机制与经典的UNet结构相结合。这是模型的核心创新点之一。UNet通过编码器-解码器架构进行精细的特征提取和图像复原,而Transformer通过自注意力机制能够捕捉到全局的上下文信息,提升模型在复杂图像分割任务中的表现。通过这种融合,模型不仅能够保留局部特征信息,还可以获取到跨区域的全局依赖,提高了分割的准确性。
-
预训练的ResNet50作为编码器:该模型在编码器部分使用了预训练的ResNet5