1. 项目简介
本项目旨在实现卫星图像中的道路检测任务,利用先进的深度学习分割模型 DeepLabV3Plus 对道路区域进行精确分割。卫星图像中的道路检测在智能城市建设、无人驾驶导航等领域具有重要应用价值。传统方法难以应对高分辨率图像的复杂性,而深度学习方法通过学习特征表示,可以在大规模数据集上取得良好的性能。
本项目基于 PyTorch 框架,使用了 segmentation_models_pytorch
库中的 DeepLabV3Plus 模型,该模型采用了 ResNet50 作为编码器,并利用了 ImageNet 预训练权重加速训练过程。我们对输入的卫星图像进行了预处理和增强,创建了道路的二分类任务(背景与道路)。通过 DiceLoss 作为损失函数和 IoU 作为评估指标,模型通过多轮迭代优化来提升分割精度。
训练过程中,我们将数据集分为训练集和验证集,并进行数据增强以提升模型的泛化能力。最终,最佳模型根据验证集上的 IoU 得分进行保存,用于后续的实际部署与评估。
2.技术创新点摘要
本项目在卫星图像的道路检测任务中引入了多个技术创新点,以提高模型的准确性和泛化