项目源码获取方式见文章末尾!
1. 项目简介
本项目的目标是利用深度学习模型DeepFM(Deep Factorization Machine)来预测高潜购买用户,从而提高营销的精准度和销售转化率。随着电商平台的用户行为数据不断积累,如何有效识别出潜在的高价值用户是各大平台优化资源配置、提升盈利能力的重要任务。DeepFM模型结合了传统的FM模型与深度神经网络的优点,既能够通过因子分解的方式处理稀疏特征(例如用户与商品的交互数据),也可以通过深度学习来捕捉高阶的特征组合关系。因此,DeepFM非常适合处理像电商这种复杂的推荐场景。
项目中,数据主要包括用户行为、商品特征及交互信息。通过对这些数据进行预处理、特征提取,模型可以预测用户未来的购买行为。DeepFM模型通过同时训练因子分解层和深度神经网络,既能对显性特征进行准确建模,又能自动学习隐性特征交互。该模型不仅在推荐系统中有广泛应用,还可以被用于广告点击率预测、个性化推荐、用户购买意图分析等场景,极大地提升了商业决策的效率和准确性。
2.技术创新点摘要
从代码中可以看到