1. 项目简介
该项目旨在利用深度学习模型与计算机视觉技术,对停车场中的车位进行检测和状态分类,从而实现智能停车管理系统的功能。随着城市化的发展,停车场管理面临着车位检测效率低、停车资源分配不均等问题,而传统的人工检测方法不仅耗时费力,且难以适应大规模停车场的实时需求。为此,本项目提出了一种基于图像处理和深度学习的解决方案,通过摄像头实时获取停车场视频或图像数据,并借助卷积神经网络模型(Convolutional Neural Network, CNN)对车位进行自动识别、位置标注以及空闲与占用状态的分类。项目使用了VGG16作为基础模型,并通过数据增强、迁移学习等技术对车位状态进行精确预测。应用场景包括:停车场监控系统、车位引导系统以及停车资源管理平台等。该方案能够显著提升停车场管理效率,减少停车时间,提高用户体验,并为未来智慧城市停车管理系统的设计提供了参考与借鉴。整体项目分为数据预处理、车位检测、状态分类、结果可视化等模块,并采用Python与Keras库进行模型训练和部署,具有可扩展性和较高的应用价值。
2.技术创新点摘要
- 多阶段图像处理与区域提取策略:在车位检测过程中,该项目使用了一套多阶段的图像处理流程来确保目标区域的精确识别。通过颜色过滤(
select_