关注底部G-Z-H,回复暗号:13,免费获取600多个深度学习项目资料,快来加入社群一起学习吧。
1. 项目简介
本项目 A020-LSTM电力预测 旨在通过使用深度学习模型来实现电力需求的预测。随着智能电网的发展和电力消耗的增加,预测电力需求对电力系统的优化管理和资源分配具有重要意义。本项目的核心任务是基于历史电力数据,应用 长短期记忆网络(LSTM) 来构建预测模型。LSTM 作为一种循环神经网络,擅长处理时间序列数据,并能够捕捉长期依赖关系,特别适合电力数据这种具有时序性的应用场景。
项目的数据预处理步骤包括:对数据进行标准化处理、填补缺失值,并生成用于训练的时间序列数据。模型的输入包括多个电力相关的特征,如 电压、全局有功功率、全局无功功率、全局电流强度,通过这些特征,模型可以对未来的电力消耗进行预测。此外,项目还包含故障检测模块,旨在通过预测值与实际值的偏差检测潜在的电缆故障。这不仅提升了模型的应用场景,也加强了其在电力系统中的实用性。