引言
生成式对抗网络(Generative Adversarial Networks,简称 GAN)由伊恩・古德费洛(Ian Goodfellow)等人于 2014 年提出,作为深度学习领域的重要成果,其为图像合成领域带来了革命性的变化。GAN 通过生成器和判别器之间的对抗博弈过程进行训练,在图像生成方面展现出卓越的能力。随着研究的不断深入,GAN 的应用范畴持续拓展,在图像修复、超分辨率、风格迁移等多个图像合成领域,取得了创新性的成果,为解决实际问题提供了新的思路与方法。
一、生成式对抗网络(GAN)的基本原理
GAN 由生成器(Generator)和判别器(Discriminator)两部分构成。生成器的主要任务是从随机噪声中生成模拟数据,而判别器的职责则是判断输入数据是真实数据还是由生成器生成的伪造数据。在训练过程中,生成器和判别器进行对抗博弈:生成器试图生成更加逼真的数据,以欺骗判别器;判别器则努力提高自己的鉴别能力,准确区分真实数据和伪造数据。这种对抗训练的过程类似于造假者与警察之间的较量,在相互竞争中,两者的性能不断提升。
用数学语言描述,设 \( G \) 为生成器, \( D \) 为判别器, \( z \) 为随机噪声, \( x \) 为真实数据。生成器 \( G \) 将噪声 \( z \) 映射到数据空间,生成伪造数据 \( G(z) \)。判别器 \( D \) 的目标是最大化区分真实数据 \( x