智能机器人的情感交互技术是当前人工智能领域的一个重要研究方向,旨在使机器人能够感知、理解和回应人类的情感,从而实现更加自然、人性化的人机交互。以下是关于智能机器人情感交互技术研究进展的详细介绍:
情感交互理论的进展1
- 可进化心状态转移模型(EMSTM)的提出:2024 年,Ren 等提出了 EMSTM,旨在通过可观察行为和历史情感来模拟追踪自然人的心理状态转变过程。该模型拓展了 “心状态转移网络”,融合了模式识别方法,创新地定义了情感表达强度(EEE)这一概念,用以统一刻画不同模态情感外在表达,奠定了人机情感交互的可计算理论基础。
- 非言语线索与情感关联的研究:美国俄勒冈州立大学的 Sanchez 等关注了机器人手势与自然人情感在公共交互场景下的关联,发现交互中非言语线索对自然人的情绪有着显著影响。法国巴黎综合理工学院的 Bal 等则探索了如何从机器人自带的传感器中获取人类手臂的姿势和运动信息,以便在人机物理交互场景中区分人类的情感状态,其关注的 “力量” 维度与 EMSTM 模型中 EEE 概念高度契合。
- 交互场景的重视:2024 年 10 月,美国罗切斯特理工学院的 Xu 等针对工业场景,探讨了将增强现实技术融入人机协作以提高情境感受的可能性,这是对任福继 EMSTM 模型的自然扩展。
情感认知技术的发展1
- 情感量化模型的讨论:情感计算的基础是情感量化模型,主要分为离散模型与连续模型。2024 年,量化模型方面有重要进展,如 Colombetti 等讨论了效价和唤醒度之间的关系,Smith 等回顾了唤醒度在生理学中的起源