摘要:本文详细介绍了两种常见的无监督学习算法 ——K - means 聚类算法和 DBSCAN(密度基于空间聚类的应用)算法的原理、特点以及应用。首先阐述了 K - means 算法通过随机初始化聚类中心,依据数据点与聚类中心的距离进行迭代聚类的过程,以及其在数据压缩、图像分割等领域的广泛应用。接着深入探讨了 DBSCAN 算法基于数据点的密度连接性来发现聚类的原理,它能有效处理非凸形状的数据集且对噪声点具有鲁棒性,在地理信息系统、异常检测等方面有着重要作用。通过对这两种算法的比较和分析,为实际应用中根据不同数据特点和任务需求选择合适的聚类算法提供了参考。
一、引言
在当今数据爆炸的时代,如何从海量的数据中提取有价值的信息成为了许多领域面临的重要问题。无监督学习作为机器学习的一个重要分支,旨在从无标记的数据中发现潜在的结构和模式。聚类分析是无监督学习中的一项关键技术,它将数据对象划分为不同的簇,使得同一簇内的数据对象具有较高的相似性,而不同簇之间的数据对象具有较大的差异。K - means 聚类算法和 DBSCAN 算法是两种经典且广泛应用的聚类算法,它们各自具有独特的原理和适用场景。
二、K - means 聚类算法
(一)算法原理
K - means 算法是一种基于划分的聚类算法,其目标是将数据集划分为 K 个簇,使得每个簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。算法的基本步骤如下:
- 初始化:随机选择 K 个数据点作为初始聚类中心。
- 分配数据点:对于数据集中的每个数据点,计算它与 K 个聚类中心的距离(通常使用欧几里得距离),并将其分配到距离最近的聚类中心所在的簇。
- 更新聚类中心:对于每个簇,计算该簇内所有数据点的均值,将其作为新的聚类中心。
- 迭代:重复步骤 2 和 3,直到聚类中心不再发生变化或达到预设的迭代次数。
(二)算法特点
- 优点
- 简单高效:算法原理简单,易于实现&#x