CFCRS实验

1.Requirments

python=3.8
pytorch=1.8.1
cudatoolkit=11.1.1
pyg=2.0.1
transformers=4.21.3
accelerate=0.12
nltk=3.6

只列举一些关键的包。

硬件: 24G gpu

数据集: redial

2.Training Recommendation Dialogue Simulator

这里需要修改train_FLM.sh,将sample_path.py生成的文件复制到相应flow文件夹下:

python sample_path.py --n_walks 10000
cd ../../
# redial,inspired
cp data/redial-flow/path_num-10000.jsonl model/simulator/data/${dataset}_flow

网不好的记得在训练之前先提前下载好facebook/bart-base.

接下来运行train_schema.sh.

2.1 FLM实验结果:

请添加图片描述
请添加图片描述
请添加图片描述

Summary:

bleu-1bleu-2bleu-3bleu-4dist-1dist-2dist-3dist-4loss
0.880.210.060.222.378.108.948.073.19
2.2 Schema实验结果:

请添加图片描述
请添加图片描述

Summary:

recall@1recall@5recall@10loss
0.490.990.843.31

3.Training CRS models

这里只使用UniCRS作为base model.

bash script/UniCRS/redial/train_pre.sh 0 
bash script/UniCRS/redial/train_rec.sh 0 
bash script/UniCRS/redial/train_cf.sh 0 
bash script/UniCRS/redial/train_conv.sh 0 
3.1 train_rec结果:

请添加图片描述
请添加图片描述
请添加图片描述

3.2 train_cf结果:

请添加图片描述
请添加图片描述
请添加图片描述
Summary:

modelrecall@1recall@10recall@50mrr@1mrr@10mrr@50ndcg@1ndcg@10ndcg@50
UniCRS0.0470.2210.4300.0470.0920.1010.0470.1220.167
UniCRS-CFCRS0.0480.2320.4470.0480.0930.1030.0480.1260.172

论文结果:
请添加图片描述

3.3 train_conv结果:

请添加图片描述
请添加图片描述

bleu-1bleu-2bleu-3bleu-4dist-1dist-2dist-3dist-4
0.1860.0390.0160.0090.06512.4534.2705.224
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值