MicroAgents:自我改进的智能代理框架
MicroAgents是一个创新的智能代理框架,它采用了一种全新的方法来创建可自我改进的AI代理。本文将介绍MicroAgents的核心概念、安装使用方法以及主要特性,帮助读者快速上手这个强大的AI工具。
什么是MicroAgents?
MicroAgents框架的核心理念是动态生成、评估和存储微型代理(microagents)。这些微型代理具有以下特点:
- 规模小巧,类似微服务
- 根据用户分配给助手的任务动态生成
- 经过功能评估和验证
- 成功验证后存储以供future重复使用
这种方法实现了跨会话学习,使系统能够独立推导出执行任务的方法。
技术栈
MicroAgents项目主要基于以下技术:
- Python
- OpenAI的GPT-4 Turbo
- Text-Embedding-Ada-002
安装和使用
要在本地运行MicroAgents,请按照以下步骤操作:
- 克隆代码库:
git clone https://github.com/aymenfurter/microagents.git
- 安装依赖:
pip install -r requirements.txt
- 设置环境变量:
- 使用OpenAI API:
export OPENAI_KEY='your_api_key_here'
- 使用Azure OpenAI(API密钥方式):
export AZURE_OPENAI_API_KEY='your_api_key_here'
export AZURE_OPENAI_ENDPOINT='https://my_endpoint_name_here.openai.azure.com/'
- 运行演示:
python main.py
- 交互式聊天体验:
python textual-app.py
注意:MicroAgents直接执行Python代码,目前没有沙箱。强烈建议在隔离环境(如GitHub Codespaces或Docker)中运行,以限制潜在风险。
主要特性
-
并行化:创建新代理时,会并行生成3个代理,保留首个成功完成任务的代理。
-
预训练代理:包含28个预训练代理,可执行从与OpenStreetMap交互到提供当前天气信息等广泛任务。
-
验证阶段:新增"Judge"阶段,确保声称可工作的代理实际表现符合预期。
-
持久化存储:使用SQLite跨运行存储代理。
-
改进的代理记忆:代理只记住它们之前创建的代理,提高了代理创建的稳健性。
-
多用户界面:提供命令行界面(CLI)和基于Gradio的Web界面。
贡献
MicroAgents是一个开源项目,欢迎社区贡献。任何形式的贡献都将受到高度赞赏。
许可证
MicroAgents在MIT许可证下分发。更多信息请参见LICENSE
文件。
通过本文的介绍,相信读者已经对MicroAgents有了初步的了解。这个框架为创建自我改进的AI代理提供了一种新的范式,值得进一步探索和实践。欢迎访问GitHub项目页面获取更多信息,并参与到这个激动人心的项目中来!
文章链接:www.dongaigc.com/a/microagents-beginner-guide
https://www.dongaigc.com/a/microagents-beginner-guide