Seldon Core简介
Seldon Core是一个开源的MLOps框架,专为在Kubernetes上大规模部署和管理机器学习模型而设计。它提供了一套完整的工具和组件,可以帮助数据科学家和工程师快速将机器学习模型从实验阶段转移到生产环境,并提供了丰富的功能来监控、管理和优化模型性能。
Seldon Core的主要特点
- 灵活的模型部署:支持多种机器学习框架和语言包装器
- 强大的推理图:可以构建复杂的模型管道和推理流程
- 内置监控和分析:集成了Prometheus指标和Jaeger分布式追踪
- 自动化API生成:为部署的模型自动创建REST/gRPC API
- 云原生架构:基于Kubernetes,可在各种云环境中运行
Seldon Core核心组件
1. 模型服务器
Seldon Core提供了两种类型的模型服务器:
- 可重用模型服务器:适用于部署同一类型的多个模型,通常从中央存储库(如S3)获取模型。
- 非可重用模型服务器:为特定模型定制的服务器,模型直接嵌入到镜像中。
这两种方式为用户提供了灵活的选择,可以根据具体需求选择最合适的部署方式。
2. 语言包装器
Seldon Core的语言包装器允许用户轻松将各种编程语言编写的模型转换为生产就绪的微服务。目前支持的语言包括:
- Python (生产级)
- Java (孵化中)
- R (Alpha阶段)
- NodeJS (Al