Paxml:基于JAX的大规模机器学习框架
Paxml(又称Pax)是由Google开发的一个基于JAX的机器学习框架,专门用于配置和运行大规模机器学习实验。作为一个开源项目,Paxml为研究人员和工程师提供了强大的工具,以便在现代硬件上高效训练和部署大型模型。
主要特点
Paxml的主要特点包括:
-
基于JAX构建:充分利用JAX的自动微分和即时编译能力。
-
高度可配置:提供灵活的配置选项,方便实验设计和调优。
-
先进的并行化:支持数据并行、模型并行等多种并行策略。
-
高效率:在大型语言模型训练中展现了业界领先的计算效率。
-
可扩展性:可以在从单个TPU设备到大规模TPU Pod的各种规模上运行。
-
丰富的模型库:内置多种常用模型架构,如Transformer等。
快速入门
要开始使用Paxml,首先需要设置Google Cloud TPU环境。以下是在TPU VM上安装和运行Paxml的基本步骤:
- 创建TPU VM:
export ZONE=us-central2-b
export VERSION=tpu-vm-v4-base
export PROJECT=<your-project>
export ACCELERA