NISQA: 深度学习在语音质量评估中的应用

NISQA: 深度学习在语音质量评估中的应用

在现代通信系统中,语音质量评估一直是一个重要而具有挑战性的问题。传统的评估方法往往需要大量人工参与,费时费力且主观性较强。随着深度学习技术的发展,一种名为NISQA(Non-Intrusive Speech Quality Assessment)的新型语音质量评估方法应运而生,为这一领域带来了革命性的变化。

NISQA简介

NISQA是由德国柏林工业大学的Gabriel Mittag等人开发的一个深度学习模型和框架,用于非侵入式语音质量评估。与传统方法不同,NISQA无需原始清晰语音作为参考,只需要待评估的语音样本即可完成评估,这使得它特别适合于实时监测通话质量等场景。

NISQA的核心是一个基于CNN-Self-Attention-Attention-Pooling(CNN-SA-AP)架构的深度神经网络。该网络首先使用CNN提取语音的帧级特征,然后通过Self-Attention机制建模时间依赖关系,最后使用Attention-Pooling汇聚特征得到最终的质量评分。这种设计使NISQA能够有效捕捉语音信号中的各种质量相关特征。

NISQA模型架构

NISQA的主要功能

NISQA的功能主要包括以下几个方面:

  1. 语音质量预测: NISQA可以预测经过通信系统(如电话或视频通话)传输的语音样本的整体质量。

  2. 多维度质量评估: 除了整体质量,NISQA还可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值