cv君
欢迎订阅cv君,全部文章永久可看~ ,订阅后可联系我指导,都是手把手教程。
cv君是人工智能专业的AI科班毕业优秀毕业生,从18年搞算法,至今已六年,曾在Vivo任职,负责相机AI算法落地与优化;曾在Intel获得过多次带高薪的奖,曾获CCF视觉算法赛冠军、Kaggle银牌、阿里世界人工智能大赛Top10、ICLM Top5任职期间获公司:唯一S级员工;微软黑客松比赛二等奖;擅长AI全栈,AI成像算法
cv君文章质量不错,长期更新,订阅一次即永久观看。
cv君属于科研科技热爱者,务实工作,我从来不写水文,感兴趣可以订阅,愿你与我一同为中国科技崛起而努力!
因为热爱,所以坚持去做! —cv君
展开
-
【项目实战】MobileNetV3 医学病理识别+不使用全连接预测+迁移学习+附代码数据教程
建议版本和我一致,进入Pytorch官网,点击 install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本。迁移学习很简单,直接冻结部分层,留着后几层进行训练就行,加载一下MobileNetV3-Large权重,他是在大型数据上训练过的,能有效迁移知识,快速拟合。大家好,我是cv君,今天带来以前的干货,mobilenet v3的优化,能在医学病理分类中得到优异准确率,欢迎大家三连。数据和代码已经全部放文末的百度网盘了。原创 2024-08-28 20:51:04 · 5882 阅读 · 0 评论 -
pytorch--resnet 精准迁移学习 花朵识别
目录1数据读取与预处理操作1.1读取1.2定义关于经过数据增强的数据源1.3数据标准化处理--定义训练测试的数据2.我通过迁移学习使用 resnet 来定义深度学习的网络框架2.1基于预训练网络模型来初始化我们的网络2.2定义优化器2.3训练模块2.4全局微调3.测试3.1加载模型参数3.2定义关于测试数据预处理的函数3.3展示工作到目前为止,机器学习是从给定的大量花朵图片中识别花朵名称的唯一选择。这使得使用深度学习实现花识别任务对于每个初学者来说原创 2021-09-24 12:01:46 · 20434 阅读 · 5 评论 -
【AI全栈三】语音质量算法、评价指标 看一篇就够系列(附算法源码+干货)
文章目录那么我们过去是怎么评价的?客观评价-基于指标客观评价-基于模型R&S®UPV音频分析仪小结那么我们现在用哪些评价方法呢?基于深度学习的方法:AutoMOS, QualityNe, NISQA, MOSNetMOSNet(`absolute.mosnet`或`mosnet`)语音质量的感知评估(Perceptual evaluation of speech quality, PESQ)客观语音质量评估的单端方法P.563预处理特征参数提取失真类型判决和结果映射客观评价结果的映射模型NISQA:原创 2021-05-16 22:04:22 · 12025 阅读 · 10 评论 -
【实战项目】基于BP神经网络的温度预测(附源码)
今天我们使用经典的BP神经网络进行回归训练,目的是为了预测出上海市多个维度因素影响下的地表气温预测先上图:BP神经网络是什么BP(Back-propagation,反向传播)神经网络是最传统的神经网络。也就是使用了Back-propagation算法的神经网络。请注意他不是时下流行的那一套深度学习。要训练深度学习level的网络你是不可以使用这种算法的。原因我们后面解释。而其实机器学习的bottleneck就是成功的突破了非常深的神经网络无法用BP算法来训练的问题。那么反向传播的东西是什么呢.原创 2021-05-21 14:08:45 · 20472 阅读 · 14 评论 -
【动手撸深度学习】细粒辨花 一文实践清华博士Densenet
hello ,大家好,欢迎来到动手撸深度学习,一个必看系列,我会将动手撸深度学习一直完善下去,让文章更精彩,更优秀,之所以选择付费,主要是文章原创,全是干货,大家可以看我的个人信息,点赞数,收藏数,可以看出,我的文章从来不水,把自己的知识全盘托出,佛曰 渡有缘人,我在csdn以前文章都是免费的,现在我设置成了付费,不希望精品白嫖,因为你确实可以从这学到很多东西~cv君力挺的:最值得看的专栏系列:动手撸深度学习,学习完本系列,你能从调包侠到一个能独立打比赛的朋友周边的神!文章付费,不想让太多人白嫖!!!因原创 2021-02-25 09:58:34 · 22123 阅读 · 25 评论 -
【动手撸深度学习】AI学子借问显卡何处有,牧童遥指我这里!(全面亲测)
cv君力挺的,最值得看的专栏系列:动手撸深度学习(订阅一个专栏,全部专栏免费可看~)学习完本系列,你能从调包侠到一个能独立打比赛的造包侠!文章付费,不想让太多人白嫖!!!因为全部原创,很珍贵~话不多说,开始正题,我通过视频 和这篇文章的形式归纳总结了大量能让 没钱的AI学生 白嫖优质算力的平台,尤其是包括使用方法,改善方法,编码方法,以及实践!下面给了一个优秀的例子,能让你通过一篇教程,学会下列技术栈的使用(不包括原理):目标检测算法的调包,图像分类的原创使用,如何白嫖colab 的T4显卡(附带保持原创 2021-02-21 18:03:07 · 25852 阅读 · 100 评论 -
AR+AI的这些落地应用 你居然不知道?
文章目录AR 口可乐视觉识别拣选ARVRMRAR 口可乐视觉识别拣选Coca-Cola HBC通过智能眼镜实现视觉识别拣选货物可口可乐希腊公司(以下简称“Coca-Cola HBC”)是世界第二大可口可乐装瓶商,也是欧洲最大的装瓶商,拥有希腊最全的供应链,遍布全国4,000个点,4个工厂和6个配送基地,每年的销量超过20亿箱。位于塞萨洛尼基的希腊北部配送基地是可口可乐在该地区最大的配送点之一,这里有200名员工,每天为963名客户提供服务,拥有14,020平米的仓储空间,容纳8,733个托盘。平均每原创 2021-02-06 21:15:55 · 2916 阅读 · 39 评论 -
【动手撸深度学习】领导说你连调参都不会?
文章目录神经网络训练细节与注意点梯度检查使用双精度浮点数使用少量数据点不要让正则化项盖过数据项训练过程中的监控训练集/验证集上的准确度我们用标准差为0.01均值为0的高斯分布值来初始化权重(这不合理)重新正确设定权重:随机梯度下降与参数更新普通更新物理动量角度启发的参数更新Nesterov Momentum计算dx_ahead(在x_ahead处的梯度,而不是在x处的梯度)学习率退火二阶方法Adam欢迎关注公众号~ 你可以获取这篇文章的详细讲解视频和相关实现代码~想获取视频和实现代码(巨大学习价值)~可以在原创 2021-01-31 13:52:40 · 33869 阅读 · 45 评论 -
【动手撸深度学习】一文玩转深度学习搭建实现经典图片分类!
手撸神经网络 深度学习环境搭建与简单神经网络实现图片分类文章目录手撸神经网络 深度学习环境搭建与简单神经网络实现图片分类手撸神经网络 全代码 如下官方安装教程WIN10安装CUDA10CUDA安装成功!WIN10安装cuDNNcuDNN安装完成!!大家好,我是cv君 周小夏 从现在开始开启一个手撸神经网络模块,和大家一起不做调包侠,自己全手撸神经网络,带领大家实现各种任务,解决各种问题,尤其是知道神经网络底层原理,让神经网络更可解释~ 我所有代码会开源到github以及各人公众号 :DeepAI原创 2021-01-29 14:02:13 · 54446 阅读 · 46 评论 -
最强端到端文本识别模型 Mask TextSpotter v3 来了!
文章目录简述Mask TextSpotter v3整体流程实验结果总结与思考cv侠的个人公众号helllo 大家好,我是cver,今天给大家推荐Ocr 算法~简述场景文本的识别可以用文本检测+文本识别两个过程来做,近年来端到端的场景文本识别(即Text Spotting)越来越引起学术界的重视,而华中科技大学白翔老师组的 Mask TextSpotter v1、v2 一直是该领域的代表性工作。近日 Mask TextSpotter v3 发布,代码已开源,论文 Mask TextSpotter原创 2021-01-11 19:50:52 · 5650 阅读 · 101 评论 -
【效率提高10倍项目原创发布!】深度学习数据自动标注器开源 目标检测和图像分类(高精度高效率)
文章目录项目结构与使用教程目标检测模式影像分类模式数据采集演示与训练出来的模型演示训练出来的目标检测模型演示训练出来的分类模型演示【固定框检测模式】一键训练YOLOv3 YOLOv4 YOLOv5 方法转换数据训练与检测训练检测核心部分介绍目标检测数据标注分类分类训练部分分类推理部分模型导出部分后续优化优化tips1: 使用更多数据增强优化tips2:使用高质量相机采集,或者修改图片size获取更高清图片优化tips3:使用更高质量跟踪算法:比如deepsort ,我已经做了,后续慢慢会开源优化tips4:原创 2020-12-20 22:00:45 · 68964 阅读 · 296 评论 -
【实战】基于TensorRT 加速YOLO系列以及其他加速算法实战与对比
今天cv调包侠尝试了使用TensorRT 做YOLO的加速,先概述我这边实现的速度和精度对比:精度上对比:可以看到,精度上使用TensorRT 精度不掉,反而略微上升了一些些(具体情况未知,还在摸索)TensorRT 速度上的对比:另外值得注意的是,我使用的TensorRT的作者介绍说:YOLOV5 s小模型原本已经很快了,使用python版的tensorRT加速反而慢了一些,使用cpp版快了3倍,如果是使用YOLOV5 X的大模型,加速效果会更明显。下面开始手把手教学,先大致说说思路:1原创 2020-12-07 15:58:11 · 16929 阅读 · 128 评论 -
【项目实战】智能零售商品检测(训练详解+优化部署策略+大型数据开源)基于EfficientDet Pytorch
文章目录前言何为Efficientdet1 数据准备数据标注附上自己的Lablimg简易教学:将XML转换成COCO JSON格式安装依赖模型训练模型推理模型介绍BiFPNCross-Scale Connections后续思路前言这两天我CV调包侠帮助自己深度学习交流群的朋友做一个智能零售的企业级项目,我帮助他完成了零售商品检测的基本迭代一,已经轻松地完成了Yolo系列的训练,比如Yolov5 和Yolov3,Efficientdet是一个优秀的目标检测算法,速度与精度并存的实时性目标检测算法,我们今天原创 2020-11-16 19:37:08 · 13905 阅读 · 57 评论 -
【深入YoloV5(开源)】基于YoloV5的模型优化技术与使用OpenVINO推理实现
【深入YoloV5(开源)】基于YoloV5的模型优化技术与使用OpenVINO推理实现前言CV调包侠自己的深度学习交流群中一位兄弟在看我以前的github和博客:https://blog.csdn.net/qq_46098574/article/details/107334954 中,跑完项目,发现效果较差,不尽人意,然后想知道如何提高评价指标和优化,因为Yolov5 的速度和精度是及其优秀的,很多人就想着优化,并且能以此为baseline 落地一些实时性项目。我昨天想了一下,做了第一次的模型优化,后原创 2020-11-15 12:17:52 · 35703 阅读 · 148 评论 -
【天池月饼活动】基于自然语言处理文本生成与轮询问答与依图生文与中秋月饼配图
文章目录活动要求项目演示自然语言处理文本生成之对联上下联对答:自然语言处理文本生成之依图生文:多级轮询月饼对话自动生成月饼代码讲解自从我前天进入阿里天池实验室,我就被他吸粉了,嫖了他的服务器和算力,今天看到有个月饼节小活动,刚好自己的模型在训练,有时间了,另外好像天池这个项目点赞topn可以嫖件天池的体恤,刚好没衣服穿了, 就花了几十分钟写了这个天池小活动的代码~欢迎来Star哈哈哈。活动要求画月饼+配文字项目演示自然语言处理文本生成之对联上下联对答:上联:良辰良景良偶文本生成下联:佳男佳.原创 2020-10-05 19:35:20 · 9095 阅读 · 42 评论 -
【项目实战】基于Yolov5 火灾浓烟检测与天池免费算力的教学篇
文章目录免费算力,白嫖党顶级薅羊毛!一 阿里天池的使用篇二 开启我们在天池服务器的第一个项目: 火灾浓烟与吸烟检测2.1 演示2.2 介绍三 模型训练四 天池端训练五 总结与技巧六 总结免费算力,白嫖党顶级薅羊毛!愁笔记本差,又买不起台式机显卡的同学,请注意啦!今天cv调包侠分享一下自己这几天开始使用的阿里天池的免费GPU服务器,以及这篇文章介绍如何在天池的tesla p100 16gb显存的服务器上训练自己的深度学习视觉模型~我们以火灾浓烟检测为例子。首先,大家可以看我Yolov5 吸烟检测文章与原创 2020-10-04 12:22:11 · 58555 阅读 · 118 评论 -
DeepAI 视界深度学习数据集大放送【一】
想要数据集?还想要标注好的数据集?你还想白嫖算法?还想白嫖训练好的模型?看到这篇文章你就找对地方了一 [NLP] 50万闲聊语料公众号回复:闲聊二 密集人群检测公众号回复:密集人群检测三疲劳驾驶数据集公众号回复:pilao四 文本生成与文本分类数据集公众号回复:文本生成五 实体命名识别公众号回复:实体命名识别六 人脸识别公众号回复:人脸识别七 车牌数据集公众号回复:车牌八 自动驾驶数据集公众号回复:自动驾驶九 异常行为数据集公众号回复:异常行为十 人脸关键原创 2020-09-20 19:00:25 · 14433 阅读 · 113 评论 -
【深度】工程师必备—AI模型训练+推理优化+嵌入部署
文章目录一 项目展示二 依赖环境与导读2.1依赖环境2.2 本文导读三 模型训练3.1 新手也能做对的教学3.2 高手也爱的黑科技:无损的半精度模型四 模型优化4.1 Openvino 介绍 可以参见这篇博客4.2 Openvino安装4.3 Openvino 模型转换与推理五 模型部署5.1 模型转换 部署自己训练好的算法模型,经过openvino推理后应用于2085模组六 模组使用6.1运行cnn目标检测demo6.2 部署自己训练好的算法模型,经过openvino推理后应用于2085模组七 实际对比八原创 2020-09-04 09:36:24 · 46146 阅读 · 257 评论 -
AI视觉模型训练+优化+部署应用演示
AI视觉模型训练+优化+部署应用演示 深度学习与计算机视觉实战篇视频,自己用心做的,同时也是第一次尝试制作视频,侵删联系,希望能与大家一同学习,关注公众号,一起学习深度学习模型训练+模型优化+算法部署。 作者:周小夏(cv调包侠)公众号:DeepAI 视界,欢迎点赞关注+转发对视频中算法(包括但不局限)与视频中的开发模组(双目相机+深度相机+RGB相机)并且支持slam定位与多模型融...原创 2020-08-24 19:40:37 · 11840 阅读 · 89 评论 -
【全面】人工智能技术栈与学习路线:机器学习 深度学习 视觉 NLP 推荐系统
文章目录一 概述(本文原创)二 人工智能编程语言/数据结构与算法三 人工智能基础原理四 智能信息获取(简称爬虫) 与数据分析1、发起请求3、解析内容4、保存数据二、Requests库介绍2.1基本介绍requests的基本使用流程三、selenium四:效率问题五:资源浪费六:能被识别七、scrapy框架八、Bs4整体使用步骤九、字段匹配方案十:数据存储与队列任务(MongoDB与Rabbitmq)十一、总结requests vs Scrapy两个方法看情况用相同点五 统计学原理/离散数学/概率论与数理统计原创 2020-08-19 19:37:40 · 18738 阅读 · 79 评论 -
【Openvino】从入门到实战(三)人脸识别+表情检测+行人检测+人脸关键点检测
文章目录一 环境搭配二 人脸识别与关键点检测三 行人检测四 人脸识别与表情检测四 深度学习算法交流一 环境搭配环境安装请看上一篇博客:传送门二 人脸识别与关键点检测以下来源于Openvino官方model ,在win10 和ubuntu大体步骤相似,跑demo:想转ubuntu 或者win10 方法一样,我下面分别用win10 和ubuntu跑几个demo,大家可以试着做一下。效果展示一、 准备流程:在python环境中加载openvino打开openvino安装目录如:C:\In原创 2020-08-18 15:04:01 · 14976 阅读 · 95 评论 -
【OpenVino】从入门到实战篇(二)Ubuntu18.04+Windows 10双系统环境配置与坑解决
文章目录一 Openvino介绍二 Ubuntu 18.04 安装 Vino三 Windows 安装 Vino一.环境要求二.安装四 解决安装的错误,踩坑日记一 安装好后python找不到vino二 其他坑五 深度学习算法交流群与数据开源一 Openvino介绍参见我的这篇博客OpenVINO是英特尔基于自身现有的硬件平台开发的一种可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,支持各种英特尔平台的硬件加速器上进行深度学习,并且允许直接异构执行。 支持在Windows与Linux系统原创 2020-08-18 14:22:16 · 11463 阅读 · 1 评论 -
【图神经网络综述】GNN原理+落地应用+实现框架全解
【2020 图神经网络综述】A Comprehensive Survey on Graph Neural Networks文章转载于好我的朋友:大家可以关注他的博客: Memory逆光 博客地址:https://blog.csdn.net/weixin_44936889/article/details/107764037未经作者允许,本文禁止转载1. 摘要:2. 简介:2.1 为什么要用图表示数据:2.2 GNN与network embedding:2.3 GNN与Gra原创 2020-08-06 10:59:11 · 38488 阅读 · 2 评论 -
基于深度学习GAN的Ai换装(比赛记录)
比赛记录(一)一、AI换装:1:模型安装与调试Viton -Gan项目地址:https://github.com/shionhonda/viton-ganclone好以后,目录中只有文件,没有文件夹,缺少:1:编译环境,torch -gpu版本地址:链接:https://pan.baidu.com/s/1d6ThY0AlhDF-cJQenL8vLw提取码:j784 通过pip install XXXXXXX.whl安装 (python3.7, 64位,cuda为10.2)通过pip原创 2020-06-26 21:05:54 · 15214 阅读 · 78 评论 -
【机器学习】回归预测+BP回归
线性和多项式回归在这一简单的模型中,单变量线性回归的任务是建立起单个输入的独立变量与因变量之间的线性关系;而多变量回归则意味着要建立多个独立输入变量与输出变量之间的关系。除此之外,非线性的多项式回归则将输入变量进行一系列非线性组合以建立与输出之间的关系,但这需要拥有输入输出之间关系的一定知识。训练回归算法模型一般使用随机梯度下降法(SGD)。优点:建模迅速,对于小数据量、简单的关系很有效;线性回归模型十分容易理解,有利于决策分析。缺点:对于非线性数据或者数据特征间具有相关性多项式回归难以建模;原创 2020-06-14 13:37:34 · 12299 阅读 · 49 评论 -
基于深度学习的医学图像分割(一)
医学图像分割是医学图像处理与分析领域的复杂而关键的步骤,其目的是将医学图像中具有某些特殊含义的部分分割出来,并提取相关特征,为临床诊疗和病理学研究提供可靠的依据,辅助医生作出更为准确的诊断。由于医学图像自身的复杂性,在分割过程中需要解决不均匀及个体差异等一系列问题,所以一般的图像分割方法难以直接应用于医学图像分割。当前,医学图像分割仍在从手动分割或半自动分割向全自动分割发展。 图像分割的定义: 令R代表整个图像区域,对R的分割可看做将R分成若干个满足以下条件的非空子集(子区域){R1,R2,R原创 2020-05-21 10:18:46 · 21671 阅读 · 0 评论 -
【项目实战】基于PeLee的多目标实时检测
提到轻量级神经网络,大家都会提到MobileNet V1 V2 和 ShuffleNet V1 V2,似乎较少看到大家提到PeleeNet,下面介绍一下检测网络PeleePelee:移动端实时检测骨干网络在ImageNet数据集上,PeleeNet只有MobileNet模型的66%,并且比MobileNet精度更高。PeleeNet作为backbone实现SSD能够在VOC2007数据集上达到76.4%的mAP。文章总体上参考DenseNet的设计思路,提出了三个核心模块进行改进,有一定参.原创 2020-05-16 09:40:02 · 11527 阅读 · 51 评论 -
【详解】多元的智能推荐系统
写在前文:最近在涉猎推荐系统,可谓是内容繁多,我会偏向机器学习&深度学习方向探究推荐系统,尤其是协同过滤算法~一起学习吧协同过滤简介: 协同过滤(Collaborative Filtering)作为推荐算法中最经典的类型,包括在线的协同和离线的过滤两部分。所谓在线协同,就是通过在线数据找到用户可能喜欢的物品,而离线过滤,则是过滤掉一些不值得推荐的数据,比如推荐值评分低的数据,或者虽然推荐值高但是用户已经购买的数据。协同过滤的模型一般为m个物品,m个用户的数据,只有部分用户和部分数据之原创 2020-05-09 16:45:01 · 12635 阅读 · 2 评论