小王领了一队按身高由低到高排列的队伍,小张领了队按身高由高到低排列的队伍,
设计一算法,将两个队伍合成一资按身高由低到高排列的队伍(注;如果是对队列操作。必须进遵循先先入先出规则)。给出:
(1)算法思想:(2)算法描述:
(3)算法的时、空复杂度分析。
要将两个队伍合成一个按身高由低到高排列的队伍,可以采用归并排序的思想。以下是算法的详细描述:
### (1) 算法思想
我们将两个已经排好序的队伍(一个是从低到高,另一个是从高到低)合并成一个新的队伍。由于小张的队伍是从高到低排列的,我们可以将其反转,使其也按从低到高排列。然后,我们可以使用两个指针遍历两个队伍,将其合并到一个新队伍中。
### (2) 算法描述
1. **反转小张的队伍**:将小张的队伍从高到低排列反转为从低到高排列。
2. **初始化两个指针**:分别指向小王和小张的队伍的开始位置。
3. **比较并合并**:
- 如果小王的当前身高小于等于小张的当前身高,将小王的身高加入新队伍,并移动小王的指针。
- 否则,将小张的身高加入新队伍,并移动小张的指针。
- 重复以上步骤直到一个队伍的所有成员都被合并。
4. **处理剩余的元素**:将未处理的队伍中的剩余身高添加到新队伍中。
### (3) 算法的时、空间复杂度分析
- **时间复杂度**:O(n + m),其中 n 是小王队伍的成员数,m 是小张队伍的成员数。我们需要一次遍历两个队伍。
- **空间复杂度**:O(n + m),用于存储合并后的新队伍。
### C++ 实现
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
std::vector<int> mergeTeams(const std::vector<int>& teamWang, const std::vector<int>& teamZhang) {
// 反转小张的队伍
std::vector<int> reversedTeamZhang = teamZhang;
std::reverse(reversedTeamZhang.begin(), reversedTeamZhang.end());
std::vector<int> mergedTeam;
int i = 0, j = 0;
// 合并两个队伍
while (i < teamWang.size() && j < reversedTeamZhang.size()) {
if (teamWang[i] <= reversedTeamZhang[j]) {
mergedTeam.push_back(teamWang[i]);
i++;
} else {
mergedTeam.push_back(reversedTeamZhang[j]);
j++;
}
}
// 处理剩余元素
while (i < teamWang.size()) {
mergedTeam.push_back(teamWang[i]);
i++;
}
while (j < reversedTeamZhang.size()) {
mergedTeam.push_back(reversedTeamZhang[j]);
j++;
}
return mergedTeam;
}
int main() {
std::vector<int> teamWang = {150, 160, 170};
std::vector<int> teamZhang = {180, 175, 165};
std::vector<int> mergedTeam = mergeTeams(teamWang, teamZhang);
std::cout << "Merged team (sorted by height): ";
for (int height : mergedTeam) {
std::cout << height << " ";
}
return 0;
}
```
### 总结
这段代码实现了将两个队伍合并为一个按身高由低到高排列的新队伍,遵循了先入先出原则,并且在时间和空间复杂度上保持了高效。
算法思想
为了将两个分别按身高由低到高和由高到低排列的队伍合并成一个按身高由低到高排列的队伍,我们可以采用以下策略:
创建合并队列:初始化一个空队列,用于存放合并后的队伍。
比较队首元素:比较小王队伍的第一个元素(队首)和小张队伍的最后一个元素(队尾)的身高。由于两个队伍原本就是有序的,所以队首和队尾的元素分别是各自队伍中身高最低和最高的。
选择较低元素:将身高较低的元素出队,并将其加入合并队列中。
重复比较:继续比较两个队伍的队首元素(对于小王队伍)或队尾元素(对于小张队伍),重复上述选择较低元素并加入合并队列的过程。
处理剩余元素:当一个队伍为空时,将另一个队伍中剩余的所有元素依次加入合并队列中。
返回合并队列:最终得到的合并队列即为按身高由低到高排列的队伍。
算法描述
创建一个空队列 mergedQueue。
当小王队伍不为空且小张队伍不为空时:
- 如果小王队伍的队首元素身高小于或等于小张队伍的队尾元素身高,将小王队伍的队首元素出队并加入 mergedQueue。
- 否则,将小张队伍的队尾元素出队并加入 mergedQueue。
当小王队伍为空时,将小张队伍中剩余的所有元素依次出队并加入 mergedQueue。
当小张队伍为空时,将小王队伍中剩余的所有元素依次出队并加入 mergedQueue。
返回 mergedQueue,即为合并后的按身高由低到高排列的队伍。
算法的时、空复杂度分析
时间复杂度:假设小王队伍的长度为 mmm ,小张队伍的长度为 nnn 。在最坏的情况下,我们需要比较两个队伍中的每个元素,并将其加入合并队列中。因此,时间复杂度为 O(m+n)O(m + n)O(m+n) ,即两个队伍长度之和。
空间复杂度:我们需要额外的空间来存储合并后的队列,即 mergedQueue。由于合并后的队伍长度等于两个队伍长度之和,所以空间复杂度为 O(m+n)O(m + n)O(m+n) 。
综上所述,该算法具有线性的时间复杂度和空间复杂度,效率较高,适用于处理这类队列合并问题。