请严格按照格式书写。不能出现其它文字或符号。
【分析】日期计算问题
此类问题,在日期为1900年x月y日后时,使用excel表格计算更为简便。当然,也可编程实现。注意日期格式!
【答案】2017-08-05
3. 三羊献瑞
观察下面的加法算式:
其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
【分析】枚举+全排列(DFS)
注意到上述加法算式中出现了8个不同的汉字:祥 瑞 生 辉 三 羊 献 气,且代表的数字不同。因此可枚举8个汉字对应的数字的所有可能情况。需要注意:由于祥、三位于最高位,故他们的取值范围为[1, 9],其余为[0, 9]。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int a[10]={0,1,2,3,4,5,6,7,8,9};
int main()
{
int i;
int n1,n2,sum;
do
{
//祥瑞生辉三羊献气<->a[0]~a[7]
n1=a[0]*1000+a[1]*100+a[2]*10+a[3];
n2=a[4]*1000+a[5]*100+a[6]*10+a[1];
sum=a[4]*10000+a[5]*1000+a[2]*100+a[1]*10+a[7];
//最高位不为0,且满足等式
if(sum==n1+n2 && a[0]!=0 && a[4]!=0)
{
printf("%d + %d = %d\n",n1,n2,sum);
break;
}
} while(next_permutation(a,a+10));
return 0;
}
【答案】1085
4. 格子中输出
StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。
#include <stdio.h>
#include <string.h>
void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[1000];
strcpy(buf, s);
if(strlen(s)>width-2) buf[width-2]=0;
printf(“+”);
for(i=0;i<width-2;i++) printf(“-”);
printf(“+\n”);
for(k=1; k<(height-1)/2;k++){
printf(“|”);
for(i=0;i<width-2;i++) printf(" “);
printf(”|\n");
}
printf(“|”);
printf(“%*s%s%*s”,_____________________________________________); //填空
printf(“|\n”);
for(k=(height-1)/2+1; k<height-1; k++){
printf(“|”);
for(i=0;i<width-2;i++) printf(" “);
printf(”|\n");
}
printf(“+”);
for(i=0;i<width-2;i++) printf(“-”);
printf(“+\n”);
}
int main()
{
StringInGrid(20,6,“abcd1234”);
return 0;
}
对于题目中数据,应该输出:
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
【分析】打印图形+找规律
根据题意及给出的代码,此图形(宽width 高height 含有字符串s)的打印可分为以下5部分:
1°上边界(第一行) 2°第2行-字符串上面一行 3°含有指定字符串s的行 4°字符串下面一行-倒数第2行 5°下边界(最后一行)
填空位置所填内容完成含有指定字符串s的行的打印,这里用到了 * 修饰符,作用是“过滤读入”。比如一个有3列数值的数据,若只想得到第2列数值,可以在循环里用scanf(“%*d%d%*d”, a[i])来读入第i行的第2个数值到a[i]。
但 * 修饰符在printf中的含义完全不同。如果写成printf(“%6d”, 123),是设置域宽的意思,同理,%6s也是域宽。* 修饰符正是用来更灵活的控制域宽。使用%*s,表示这里的具体域宽值由后面的实参决定,如printf(“%*s”, 6, “abc”)就是把”abc”放到在域宽为6的空间中右对齐。
这里(" ",n)相当于一个组合,用于连续打印n个空格。接下来打印时,需要注意以下两点:
1°字符长度的计算应该用buf而不是s,因为buf才是截断后的长度,用s的话,如果s长度超过了width-2,会出错;
2°打印时可能出现字符串不一定“完全居中”的情况,即稍向左偏1个空格,此时为了保证右面边界的完整性,在width为奇数时,字符串右侧多打印1个空格。
#include <stdio.h>
#include <string.h>
//打印含字符串s 宽width 高height的格子区域
void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[1000];
strcpy(buf, s);
//串太长(超过width-2,即'-'的个数),则截断
if(strlen(s)>width-2) buf[width-2]=0;
//打印上边界(第一行)
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
//打印第2行-字符串上面一行
for(k=1; k<(height-1)/2;k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
//打印含有指定字符串s的行
printf("|");
printf("%*s%s%*s",(width-2-strlen(buf))/2," ",s,((width-2-strlen(buf))%2==0)?(width-2-strlen(buf))/2:(width-2-strlen(buf))/2+1," "); //填空
printf("|\n");
//打印字符串下面一行-倒数第2行
for(k=(height-1)/2+1; k<height-1; k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
//打印下边界(最后一行)
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
}
int main()
{
StringInGrid(20,6,"abcd1234");
return 0;
}
【答案】(width-2-strlen(s))/2," “,s,((width-2-strlen(s))%2==0)?(width-2-strlen(s))/2:(width-2-strlen(s))/2+1,” "
5. 九数组分数
1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。
#include <stdio.h>
void test(int x[])
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) printf(“%d / %d\n”, a, b);
}
void f(int x[], int k)
{
int i,t;
if(k>=9){
test(x);
return;
}
for(i=k; i<9; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
_____________________________________________ // 填空处
}
}
int main()
{
int x[] = {1,2,3,4,5,6,7,8,9};
f(x,0);
return 0;
}
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
【分析】DFS
此题的实质时不断试探交换a[i]与a[k],通过x数组的全排列得到分数"x[0]x[1]x[2]x[3] / x[4]x[5]x[6]x[7]x[8]",然后判断是否为1/3。填空处是回溯法的体现。
#include <stdio.h>
//测试组成的分数,判断是否为1/3
void test(int x[])
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) printf("%d / %d\n", a, b);
}
//通过求x数组中所有数的全排列,组成分数x[0]x[1]x[2]x[3]/x[4]x[5]x[6]x[7]x[8]
void f(int x[], int k)
{
int i,t;
if(k>=9){
test(x);
return;
}
for(i=k; i<9; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
t=x[k]; x[k]=x[i]; x[i]=t; // 填空处
}
}
int main()
{
int x[] = {1,2,3,4,5,6,7,8,9};
f(x,0);
return 0;
}
【答案】t=x[k]; x[k]=x[i]; x[i]=t
6. 加法变乘法
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个
不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+10*11+12+…+27*28+29+…+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
【分析】枚举+循环
可枚举两个乘号的位置。由题意,49个数中间有48个符号(+或*),因此第一个乘号可能出现在146的后面,第二个乘号可能出现在348后面(因为要保证两个乘号不相邻)。
若第i个数后面是乘号,则i和i+1参与乘法运算;若第i个数后面是加号,则i参与加法运算。因此可标记i是否参与乘法运算,然后根据标记确定+还是*。
注意提交除示例外的另一组解中 第一个乘号的出现位置(即第一个乘号出现在哪个i后面,i即为结果)
#include <stdio.h>
#include <string.h>
#define maxn 50
int is_mul[maxn]; //第i个数是否参与乘法运算
int main()
{
int i;
int first,second; //加号位置
int result; //运算结果
for(first=1;first<=46;first++)
{
//第一个加号和第二个加号不相邻
for(second=first+2;second<=48;second++)
{
memset(is_mul,0,sizeof(is_mul));
//first*(first+1) second*(second+1)
is_mul[first]=is_mul[first+1]=1;
is_mul[second]=is_mul[second+1]=1;
i=1,result=0;
while(i<=49)
{
//第i个数参与乘法运算,则result+(i*(i+1))
if(is_mul[i]==1)
{
result+=(i*(i+1));
i+=2;
}
//第i个数参与加法运算,则result+i
else
{
result+=i;
i++;
}
}
if(result==2015)
printf("%d %d\n",first,second);
}
}
return 0;
}
【答案】16
7. 牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
【分析】DFS+优化
注意题中条件:1°不考虑花色,不考虑手中牌的先后顺序,只考虑点数 2°每人13张牌,A~K 13种牌每种4张
因此,我们可通过DFS实现该过程,同时记录当前手中牌的数量cursum及最大牌号curno,且自己手中的牌按牌号递增排序(即只考虑13张牌依次增大的组合,而不需考虑其所有组合(如2 3 4三张牌,只考虑2 3 4组合而不考虑其他5种))
若初始牌型组合中拿到的同牌号的牌的数量在区间[0, 4]内,则符合要求,方案数+1。
#include <stdio.h>
int a[13]={4,4,4,4,4,4,4,4,4,4,4,4,4}; //牌A~K的初始数目
int ans=0; //方案总数
int ret[13]; //初始牌型组合(1~13 对应A~K)
//当前已拿牌数cursum 当前手中最大的牌编号curno
void dfs(int cursum,int curno)
{
int i;
if(cursum==13)
{
//打印符合要求的初始牌型组合
/*for(i=0;i<cursum;i++)
printf("%d ",ret[i]);
printf("\n");*/
ans++;
return;
}
//注意只考虑牌号依次增大的组合
for(i=curno;i<13;i++)
{
if(a[i]!=0)
{
a[i]--;
ret[cursum]=i+1;
dfs(cursum+1,i);
a[i]++;
}
}
}
int main()
{
dfs(0,0);
printf("%d\n",ans);
return 0;
}
【答案】3598180
8. 移动距离
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
【分析】两点间曼哈顿距离的计算
由题意,求出点m和点n的位置坐标(mx, my)和(nx, ny),然后使用公式d=|nx-mx|+|ny-my|求解,d即所求结果。
注意对行号进行奇偶性判断,然后确定列号(行号(从1开始)为偶数时,列号从右向左排;否则从左向右排)。
#include <stdio.h>
#include <math.h>
int main()
{
int w,m,n; //w-排号宽度 m.n-待计算楼号
int mx,my,nx,ny; //m号楼位置(mx,my) n号楼位置(nx,ny)
int mindist; //最短移动距离
scanf("%d %d %d",&w,&m,&n);
//行号的确定:从1开始,m位于左右边界时,mx=m/w;否则mx=m/w+1
mx=(m%w==0)?(m/w):(m/w+1);
//偶数行:列号从右往左排
if(mx%2==0)
my=(m%w==0)?1:w-m%w+1;
//奇数行:列号从右往左排
else
my=(m%w==0)?w:m%w;
nx=(n%w==0)?(n/w):(n/w+1);
if(nx%2==0)
ny=(n%w==0)?1:w-n%w+1;
else
ny=(n%w==0)?w:n%w;
mindist=fabs(nx-mx)+fabs(ny-my);
printf("%d\n",mindist);
return 0;
}
9. 垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」