NPU、CPU、GPU算力及算力计算方式_npu 130

鉴于NVIDIA的Thor还是个PPT,还没有确切产品资料情况下,我们先看下现有芯片的此种算力。特斯拉FSD(自动驾驶的芯片/区别于智能座舱SOC)。

TFLOPS(Tera Floating Point Operations Per Second)和 TOPS(Tera Operations Per Second)是两种衡量计算性能的单位:

  1. TFLOPS:TFLOPS是每秒执行的万亿次浮点运算。这是衡量计算性能的传统方式,尤其用于需要大量浮点计算的任务,如图形处理和科学计算。
  2. TOPS:TOPS是每秒执行的万亿次运算。这个术语更常用于衡量AI机器学习硬件的性能,因为这些任务通常包括大量的整数固定点运算,而不是传统的浮点运算。 TOPS特别适用于评估深度学习推理任务的性能

总的来说,TFLOPS更多地关注浮点运算性能,而TOPS则涵盖了更广泛的运算类型,更适用于AI和深度学习应用。

===============================================

NPU算力

NPU算力。TOPS仅指处理器每秒万亿次操作,需要结合具体数据类型精度才可以于FLOPS转换。8位精度下的MAC(乘积累加运算,MAC/ Multiply Accumulate)数量在FP16(半浮点数/16位浮点数)精度下等于减少了一半。 PS:NVIDIA、Intel和Arm携手合作,共同撰写FP8 Formats for Deep Learning白皮书。目前业界已由32位元降至16位元,如今甚至已转向8位元(FP8精度: 8 位元浮点运算规格),这也是NVIDIA使用FP8来表征算力的原因。NVIDIA上面Thor 2000TOPS也说的是这个东东。

在NPU中,芯片都用MAC阵列(乘积累加运算,MAC/ Multi

### CPUNPUGPU 的区别与应用场景 #### CPU (中央处理器) CPU计算机的核心部件之一,负责执行指令集中的术逻辑运以及控制其他硬件设备的操作。具备强大的通用性和灵活性,能够处理多种不同类型的计算任务。对于复杂的单线程或多线程程序有着良好的支持,在多任务环境中表现出色。 ```c++ // C++代码示例:简单的矩阵乘法操作 #include <iostream> using namespace std; int main() { int A[2][2] = {{1, 2}, {3, 4}}; int B[2][2] = {{5, 6}, {7, 8}}; int C[2][2]; for(int i=0; i<2; ++i){ for(int j=0; j<2; ++j){ C[i][j]=0; for(int k=0; k<2; ++k) C[i][j]+=A[i][k]*B[k][j]; } } cout << "Result Matrix:" << endl; for(int i=0;i<2;++i){ for(int j=0;j<2;++j) cout<<C[i][j]<<" "; cout<<"\n"; } return 0; } ``` 这种顺序执行的方式非常适合于传统的编程模型和法实现[^2]。 #### GPU (图形处理单元) GPU 初期主要用于加速图形渲染工作,特别是三维图像生成方面表现突出。随着时间发展,因其出色的并行架构而被广泛应用于科学仿真、机器学习等领域。相比于传统CPU而言,它拥有更多的ALU(数逻辑单元),可以在同一时间完成大量简单重复性的浮点运任务。 ```cuda __global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if(idx<numElements) C[idx] = A[idx] + B[idx]; } // 主函数调用CUDA内核... vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements); ``` 这段CUDA代码展示了如何利用GPU来进行向量加法的并行化计算[^3]。 #### NPU (神经网络处理器) 专门为满足AI领域需求所设计的一种新型芯片——NPU,则更进一步聚焦于特定的人工智能应用场合下所需的高效能低能耗特性。特别是在卷积神经网路(CNNs)等深度学习框架里发挥着不可替代的作用;不仅提高了推断速度而且降低了能源消耗成本。 ```python import tensorflow as tf from tensorflow.keras import layers model = tf.keras.Sequential([ layers.Dense(64, activation='relu', input_shape=(32,)), layers.Dense(10, activation='softmax') ]) # 使用TensorFlow Lite转换器将Keras模型转化为适用于边缘端部署的形式 converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() with open('model.tflite', 'wb') as f: f.write(tflite_model) ``` 此Python脚本说明了怎样创建一个基本的全连接层人工神经元网络,并将其编译成能够在配备有NPU模块上的移动平台或其他嵌入式系统上运行的小型二进制文件[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值