数据处理和分析之分类算法:朴素贝叶斯(Naive Bayes):贝叶斯定理及其应用

数据处理和分析之分类算法:朴素贝叶斯(Naive Bayes):贝叶斯定理及其应用

在这里插入图片描述

引言

贝叶斯定理的历史背景

贝叶斯定理源于18世纪英国数学家托马斯·贝叶斯(Thomas Bayes)的工作,他在1763年去世后,其理论由朋友理查德·普莱斯(Richard Price)整理并发表。贝叶斯定理最初是在概率论的框架下提出的,用于解决逆向概率问题,即在已知某些结果的情况下,推断导致这些结果的条件概率。

贝叶斯定理的基本概念

贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件的情况下,如何更新对事件概率的估计。定理的数学表达形式如下:

P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值